Viết phương trình y = ax + b của đường thẳng: Đi qua điểm A(1 ; -1) và song song với Ox.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ A (4; 3) thuộc đường thẳng y = ax + b ⇒ 3 = 4.a + b (1)
+ B (2; –1) thuộc đường thẳng y = ax + b ⇒ –1 = 2.a + b (2)
Lấy (1) trừ (2) ta được: 3 – (–1) = (4a + b) – (2a + b)
⇒ 4 = 2a ⇒ a = 2 ⇒ b = –5.
Vậy đường thẳng đi qua hai điểm A(4;3), B(2 ; –1) là y = 2x – 5.
Vì hệ số góc bằng -2 nên a=-2
hay y=-2x+b
Thay x=-1 và y=2 vào y=-2x+b, ta được:
\(-2\cdot\left(-1\right)+b=2\)
hay b=0
Vậy: y=-2x
a: Thay x=1 và y=2 vào y=ax+b, ta được:
\(a\cdot1+b=2\)
=>a+b=2
Thay x=0 và y=1 vào y=ax+b, ta được:
\(a\cdot0+b=1\)
=>b=1
a+b=2
=>a=2-b
=>a=2-1=1
Vậy: phương trình đường thẳng AB là y=x+1
b: Thay x=-1 vào y=x+1, ta được:
\(y=-1+1=0=y_C\)
vậy: C(-1;0) thuộc đường thẳng y=x+1
hay A,B,C thẳng hàng
c: Thay x=3 và y=2 vào y=x+1, ta được:
\(3+1=2\)
=>4=2(sai)
=>D(3;2) không thuộc đường thẳng AB
d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)
Vì (d) vuông góc với AB nên \(a\cdot1=-1\)
=>a=-1
=>y=-x+b
Thay x=3 và y=2 vào y=-x+b, ta được:
b-3=2
=>b=5
vậy: (d): y=-x+5
Lời giải:
ĐTHS đi qua $A(-1;2)$ nên $y_A=ax_A+b$ hay $2=-a+b(1)$
ĐTHS có tung độ gốc là $3$ tức là nó đi qua $(0,3)$
$\Rightarrow 3=a.0+b(2)$
Từ $(1);(2)\Rightarrow b=3; a=1$
Vậy ptđt cần tìm là $y=x+3$
$
\(y=ax+b\left(d\right);y=-\dfrac{1}{2}x+\dfrac{1}{2}\left(d'\right)\)
\(\left(d\right)\perp\left(d'\right)\Leftrightarrow-\dfrac{1}{2}a=-1\Leftrightarrow a=2\Rightarrow y=2x+b\left(d\right)\)
Lại có \(\left(d\right)\) đi qua \(A\left(-1;2\right)\Rightarrow2=-2+b\Rightarrow b=4\)
\(\Rightarrow y=2x+4\left(d\right)\)
+ Đường thẳng song song với Ox có dạng y = b.
+ Đường thẳng đi qua điểm A(1 ; –1) nên b = – 1.
Vậy đường thẳng cần tìm là y = –1.