K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

 a)  2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )

Đặt  x 2   –   2 x   =   t ,

(1) trở thành :   2 t 2   +   3 t   +   1   =   0   ( 2 ) .

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm    t 1   =   - 1 ;   t 2   =   - c / a   =   - 1 / 2 .

+ Với t = -1  ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

(1) trở thành:  t 2   –   4 t   +   3   =   0   ( 2 )

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm  t 1   =   1 ;   t 2   =   c / a   =   3 .

+ t = 1 ⇒ x + 1/x = 1  ⇔   x 2   +   1   =   x   ⇔   x 2   –   x   +   1   =   0

Có a = 1; b = -1; c = 1  ⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . 1   =   - 3   <   0

Phương trình vô nghiệm.

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề bài được rõ ràng hơn.

30 tháng 8 2019

ĐK: \(x>-1\)

\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)

\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)

.Làm nốt. 

~Ko chắc~

30 tháng 8 2019

À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)

\(\Leftrightarrow\left(x^2+8+5x\right)\left(x^2+8+6x\right)=2x^2\)

\(\Leftrightarrow\left(x^2+8\right)^2+11x\left(x^2+8\right)+30x^2-2x^2=0\)

\(\Leftrightarrow\left(x^2+8\right)^2+11x\left(x^2+8\right)+28x^2=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+7x+8\right)=0\)

\(\Leftrightarrow x^2+7x+8=0\)

\(\text{Δ}=49-32=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-7-\sqrt{17}}{2}\\x_2=\dfrac{-7+\sqrt{17}}{2}\end{matrix}\right.\)

23 tháng 8 2023

Đặt: \(\sqrt{2x-1}=a;\sqrt{x-2}=b\Rightarrow\sqrt{x+1}=\sqrt{\left(2x-1\right)-\left(x-2\right)}=\sqrt{a^2-b^2}\)

\(pt\Leftrightarrow a+b=\sqrt{a^2-b^2}\)

\(\Leftrightarrow a^2+2ab+b^2=a^2-b^2\)

\(\Leftrightarrow2b^2+2ab=0\Leftrightarrow2b\left(a+b\right)=0\)

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

21 tháng 9 2020

Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)

Phương trình trở thành:

\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)

\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)

21 tháng 9 2020

mình dùng cách khác nhé :((

\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)

\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)

\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)

\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)

\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)

rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok

8 tháng 7 2016

2/ (x+ x + 1) (x2+ x + 2) = 12

đặt x2 + x = t

thay vào đc: 

(t + 1) (t + 2) = 12

<=> t2 + 3t + 2 = 12

<=> t2 + 3t - 10 = 0

<=> t2 - 2t + 5t - 10 = 0

<=> t (t - 2) + 5 (t - 2) = 0

<=> (t + 5) (t - 2) = 0

=> {

t=−5

t=2

thay t đc:

*) x2 + x = -5  => x loại

*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2) 

=> x = 1 hoặc x = - 2

S = {-2 ; 1}

3/ (x- 6x + 4)- 15(x- 6x + 10) = 1

đặt x- 6x + 4 = t

có: t- 15(t + 6) = 1

<=> t2 - 15t - 91 = 0

8 tháng 7 2016

Câu 2 đặt ẩn phụ là x^2+x+2= a là đc

Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc

13 tháng 7 2019

Cách liên hợp 

ĐK \(x\ge-2\)

PT <=> \(\sqrt{x+2}+5x+2\ne0\)

\(25x^2+19x+2+2\left(x+1\right)\left(\sqrt{x+2}-5x-2\right)=0\)

Xét \(\sqrt{x+2}+5x+2=0\)=> \(x=\frac{-19-\sqrt{161}}{50}\)

Thay vào ta thấy nó không phải là nghiệm của PT

=> \(\sqrt{x+2}+5x+2\ne0\)

<=> \(25x^2+19x+2+2\left(x+1\right).\frac{x+2-\left(5x+2\right)^2}{\sqrt{x+2}+5x+2}=0\)

<=> \(25x^2+19x+2+2\left(x+1\right).\frac{-25x^2-19x-2}{\sqrt{x+2}+5x+2}=0\)

<=> \(\orbr{\begin{cases}25x^2+19x+2=0\\1-\frac{2\left(x+1\right)}{\sqrt{x+2}+5x+2}=0\left(2\right)\end{cases}}\)

Pt (2)

<=> \(\sqrt{x+2}=-3x\)

<=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)

Pt (1) có nghiệm \(x=\frac{-19+\sqrt{161}}{50}\)(Tm ĐKXĐ)

Vậy Pt có nghiệm \(S=\left\{\frac{1-\sqrt{73}}{18};\frac{-19+\sqrt{161}}{50}\right\}\)

13 tháng 7 2019

Cách đặt ẩn phụ không hoàn toàn 

ĐK\(x\ge-2\)

PT 

<=> \(15x^2+6x+2\left(x+1\right)\sqrt{x+2}-\left(x+2\right)=0\)

Đặt \(\sqrt{x+2}=a\left(a\ge0\right)\)

=> \(15x^2+6x+2\left(x+1\right).a-a^2=0\)

<=> \(\left(15x^2+2ax-a^2\right)+\left(6x+2a\right)=0\)

<=> \(\left(5x-a\right)\left(3x+a\right)+2\left(3x+a\right)=0\)

<=> \(\left(3x+a\right)\left(5x-a+2\right)=0\)

<=> \(\orbr{\begin{cases}3x+a=0\\5x-a+2=0\end{cases}}\)

+ 3x+a=0

=> \(3x+\sqrt{2+x}=0\)

=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)

+ 5x-a+2=0

=> \(5x+2=\sqrt{x+2}\)

=> \(\hept{\begin{cases}x\ge-\frac{2}{5}\\25x^2+19x+2=0\end{cases}}\)=> \(x=\frac{-19+\sqrt{161}}{50}\)(TM ĐKXĐ)

vậy \(S=\left\{\frac{-19+\sqrt{161}}{50};\frac{1-\sqrt{73}}{18}\right\}\)

20 tháng 11 2015

vào câu hỏi tương tự nhé bạn