Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(x^2-2x=t\)
Phương trình đã cho trở thành:
\(2t^2+3t+1=0\)
Có a-b+c = 2-3+1 = 0
=> Phương trình có 2 nghiệm: \(t_1=-1;t_2=-\dfrac{1}{2}\)
Với t= -1 ta có \(x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Với t= -1/2 ta có \(x^2-2x=-\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{2}}{2}\\x=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\dfrac{2+\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right\}\)
b, ĐK: x khác 0
Đặt \(x+\dfrac{1}{x}=t\)
Phương trình đã cho trở thành: \(t^2-4t+3=0\)
Có a+b+c=1-4+3=0
=> Phương trình có 2 nghiệm \(t_1=1;t_2=3\)
• Với t=1 ta có \(x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x+1=0\)
Vì \(\Delta=1^2-4.1=-3< 0\) nên pt vô nghiệm
• Với t=3 ta có \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\) (TMĐK)
Vậy tập nghiệm của pt đã cho là \(S=\left\{\dfrac{3+\sqrt{5}}{2};\dfrac{3-\sqrt{5}}{2}\right\}\)
ĐK: \(x\ge8\)
Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)
\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)
\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)
\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)
Đặt \(b+1=c\text{ (}c\ge1\text{)}\)
\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)
\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)
\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)
\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)
Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được
\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)
\(\Leftrightarrow a=2\)
\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)
Kết luận: \(x=9\).
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)
\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì
\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)
\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))
Hay pt vô nghiệm
phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v
Câu 1:
ĐK: \(x\geq -8\)
Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:
\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)
\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)
\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)
\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)
\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)
\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)
\(\Leftrightarrow (x-a+2)(3x-a)=0\)
\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)
\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$
\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)
\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)
Vậy PT có nghiệm duy nhất $x=1$
Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)
Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:
\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)
\(\Leftrightarrow x^2+x+a^2-2ax=a\)
\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)
\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)
Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)
Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)
\(\Rightarrow x=0\) hoặc $x=1$
Vậy.........
\(\Leftrightarrow\left(x^2+8+5x\right)\left(x^2+8+6x\right)=2x^2\)
\(\Leftrightarrow\left(x^2+8\right)^2+11x\left(x^2+8\right)+30x^2-2x^2=0\)
\(\Leftrightarrow\left(x^2+8\right)^2+11x\left(x^2+8\right)+28x^2=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+7x+8\right)=0\)
\(\Leftrightarrow x^2+7x+8=0\)
\(\text{Δ}=49-32=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-7-\sqrt{17}}{2}\\x_2=\dfrac{-7+\sqrt{17}}{2}\end{matrix}\right.\)