K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Gọi I là trung điểm BC. Khi đó  I G = 1 3 I A ⇒ G = V I ; 1 3

Mà A ∈ O ; R  nên quỹ tích trọng tâm G của ∆ A B C  là đường tròn  O ; 1 3 R là ảnh của đường tròn ( O;R ), qua phép vị tự tâm I tỉ số  k = 1 3

Đáp án A

14 tháng 4 2016

- Theo tính chất hình bình hành : BA=DC \(\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\). Nhưng theo giả thiết A,B cố định , cho nên  \(\overrightarrow{AB}\)  cố định . Ví C chạy trên (O;R) , D là ảnh của C qua phép tịnh tiến theo \(\overrightarrow{AB}\) , cho nên D chạy trên đường tròn O’ là ảnh của đường tròn O

- Cách xác định (O’) : Từ O kẻ đường thẳng // với AB , sau đó dựng véc tơ \(\overrightarrow{OO'}=\overrightarrow{AB}\). Từ O’ quay đường tròn bán kính R , đó chính là đường tròn quỹ tích của D.

21 tháng 5 2018

Sử dụng phép tịnh tiến nha 

Mà tìm quỹ tích C trong trường hợp nào hã bạn ???????????

24 tháng 8 2019

Câu hỏi của Le Minh Hieu - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

21 tháng 4 2019

Đáp án B

Gọi O’ là điểm nằm trên OF và O’F = 1 3 OF

⇒ O ' G = 1 3 O A O ' G / / O A

Ta lại có: FG = 1 3 AF

Là đường tròn (O’; 1 3 R) với O’ là ảnh của O qua phép vị tự tâm O tỷ số  1 3

NV
24 tháng 7 2021

Nối OA, gọi M là trung điểm BC \(\Rightarrow\) OM cố định

Qua G kẻ đường thẳng song song OA cắt OM tại P

Trong tam giác OAM, theo định lý Talet:

\(\dfrac{GP}{OA}=\dfrac{PM}{OM}=\dfrac{GM}{AM}=\dfrac{1}{3}\)

Ta có những điều sau:

\(PM=\dfrac{1}{3}OM\) , mà O cố định, M cố định \(\Rightarrow\) P cố định

\(GP=\dfrac{1}{3}OA\Rightarrow GP=\dfrac{R}{3}\)

P cố định, độ dài \(\dfrac{R}{3}\) cố định 

\(\Rightarrow\) Quỹ tích G là đường tròn (P) tâm P bán kính \(r=\dfrac{R}{3}\) (1)

Mặt khác BGCD là hình bình hành \(\Rightarrow\) D đối xứng G qua M (2)

(1);(2) \(\Rightarrow\) quỹ tích D là ảnh của đường tròn (P) qua phép đối xứng tâm M

NV
24 tháng 7 2021

undefined