Một người có khối lượng 60 kg đứng trong buồng thang máy trên bàn cân lò xo. Nếu cân chỉ trọng lượng của người là 588 N thì gia tốc của thang máy là
A. 0 , 2 m / s 2
B. 3 m / s 2
C. 0 , 3 m / s 2
D. 2 m / s 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia tốc của vật trong từng giai đoạn chuyển động
+ GĐ 1: a 1 = v 2 − v 1 t 1 = 5 − 0 2 = 2 , 5 m / s 2
+ GĐ 2: a 2 = v 3 − v 2 t 2 = 5 − 5 8 = 0 m / s 2
+ GĐ 3: a 3 = v 2 − v 2 t 3 = 0 − 5 2 = − 2 , 5 m / s 2
a. + Giai đoạn 1: Thang máy đi lên nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t
⇒ g / = 10 + 2 , 5 = 12 , 5 m / s 2 ⇒ T = P / = m g / = 1000.12 , 5 = 12500 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2
⇒ T = P = m g = 1000.10 = 10000 N
+ Giai đoạn 3: Đi lên chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t
⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ T = P / = m g / = 1000.7 , 5 = 7500 N
b. Thang máy đi xuống
+ Giai đoạn 1: Đi xuống nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t
⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ T = P / = m g / = 1000.7 , 5 = 7500 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2 ⇒ T = P = m g = 1000.10 = 10000 N
+ Giai đoạn 3: Đi xuống chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t
c. Thang máy đi xuống
+ Giai đoạn 1: Đi xuống nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t
⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ N = P / = m g / = 80.7 , 5 = 600 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2 ⇒ T = P = m g = 80.10 = 800 N
+ Giai đoạn 3: Đi xuống chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t
⇒ g / = 10 + 2 , 5 = 12 , 5 m / s 2 ⇒ N = P / = m g / = 80.12 , 5 = 1000 N
Để trọng lượng của ngừơi bằng 0 khi
P / = 0 ⇒ g / = 0 ⇒ a → q t ↑ ↓ g → a q t = g
Tức là lúc này thang máy rơi tự do.
a) Khi thang máy đứng yên, lực kế chỉ trọng lượng thật của người:
b) Khi thang máy đi xuống nhanh dần đều:
c) Khi thang máy đi xuống chậm dần đều:
Đáp án B
Hướng dẫn:
Ta có thể quy bài toán con lắc lò xo trong thang máy chuyển động với gia tốc về trường hợp con lắc chịu tác dụng của trường lực ngoài F → = F q t → = − m a → .
Để đơn giản, ta có thể chia chuyển động của con lắc thành hai giai đoạn:
Giai đoạn 1: Thang máy chuyển động nhanh dần đều đi lên, con lắc dao động điều hòa quanh vị trí cân bằng mới O′.
Dưới tác dụng của lực quán tính ngược chiều với gia tốc, vị trí cân bằng mới O′ của con lắc nằm phía dưới vị trí cân bằng cũ O một đoạn O O ' = m a k = 0 , 4.4 100 = 1 , 6 cm.
+ Biến cố xảy ra không làm thay đổi tần số góc của dao động ω = k m = 100 0 , 4 = 5 π rad/s → T = 0,4 s.
Thời điểm thang máy bắt đầu chuyển động, vật ở biên trên, do vậy sau khoảng thời gian Δt = 12,5T = 5 s vật sẽ đến vị trí biên dưới, cách vị trí cân bằng cũ O một đoạn 2OO′ = 3,2 cm.
Giai đoạn 2: Thang máy chuyển động thẳng đều, con lắc dao động điều hòa quanh vị trí cân bằng O.
+ Thang máy chuyển động thẳng đều → a = 0, không còn lực quán tính nữa vị trí cân bằng bây giờ trở về O.
→ Con lắc sẽ dao đông với biên độ mới A′ = 2OO′ = 3,2 cm.
→ Thế năng đàn hồi của con lắc cực đại khi con lắc ở biên dưới, tại vị trí này lò xo giãn Δ l m a x = A ' + m g k = 3 , 2 + 0 , 4.10 100 = 7 , 2 cm.
+ Thế năng đàn hồi cực đại E d h m a x = 1 2 k Δ l m a x 2 = 1 2 .100 0 , 072 2 ≈ 0 , 26 J.