Cho tam giác đều ABC, cạnh a. Khẳng định nào sau đây là đúng?
A. A B → = A C →
B. A C → = a
C. A C → = C B →
D. A B → + A C → = a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì O thuộc đường trung trực của cạnh AB nên OA = OB. Vì ba đường trung trực của một tam giác đồng quy và do tam giác ABC cân tại A nên OA là đường trung trực của BC, do đó AO ⊥ BC. Vì tam giác ABC cân tại A nên đường trung trực AO đồng thời là đường phân giác của góc A
+) Xét ΔAOB và ΔAOC có:
OA chung
AB = AC (do tam giác ABC cân tại A)
∠OAB = ∠OAC ( Do AO là tia phân giác của góc BAC)
Do đó ΔAOB = ΔAOC ( c.g.c) suy ra ∠(AOB) = ∠(AOC) .
Do tam giác ABC cân tại A nhưng không là tam giác đều nên O không là giao điểm của ba đường phân giác của tam giác ABC. Vậy O không cách đều ba cạnh của tam giác ABC.
Đáp số (C) AO ⊥ BC.
Nếu G là trong tâm tam giác ABC thì
G A → + G B → + G C → = 0 → ⇔ A G → + B G → + C G → = 0 → ⇔ A G → + B G → + C G → = 0 → = 0
Đáp án C
A. \(\sin A = \sin \,(B + C)\)
Ta có: \((\widehat A + \widehat C) + \widehat B= {180^o}\)
\(\Rightarrow \sin \,(B + C) = \sin A\)
=> A đúng.
B. \(\cos A = \cos \,(B + C)\)
Sai vì \(\cos \,(B + C) = - \cos A\)
C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.
Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)
Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)
D. \(\sin A\,\, \le 0\)
Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)
\( \Rightarrow \sin A > 0\)
=> D sai.
Chọn A
Chọn đáp án C.
Chuẩn hóa BC = 5; AC = 4; AB = 3 →∆ABC vuông tại A.
Khi quay ∆ABC quanh AC, ta được khối nón N 1 có bán kính đáy r = AB = 3, độ dài đường sinh l = BC = 5 suy ra diện tích toàn phần của N 1 là S b = 24 π
Khi quay ∆ABC quanh AB, ta được khối nón N 2 có bán kính đáy r = AC = 4, độ dài đường sinh l = BC = 5 suy ra diện tích toàn phần của N 2 là S c = 36 π
Khi quay ∆ABC quanh BC, ta được khối nón N 3 , N 4 có bán kính đáy là chiều cao của tam giác ABC và bằng 12/5, độ dài đường sinh lần lượt là 3,4 suy ra diện tích toàn phần của khối tròn xoay S a = S 3 + S 4 = 708 π 25
Vậy S C > S a > S b
Phương trình x2 + (a + b + c)x + (ab + bc + ca) = 0
Có Δ = (a + b + c)2 − 4(ab + bc + ca)
= a2 + b2 + c2 – 2ab – 2bc – 2ac
= (a – b)2 – c2 + (b – c)2 – a2 + (a – c)2 – b2
= (a – b – c)(a + c – b) + (b – c – a)
(a + b – c) + (a – c – b)(a – c + b)
Mà a, b, c là ba cạnh của một tam giác nên
a − b − c < 0 b − c − a < 0 a − c − b < 0 ; a + c − b > 0 a + b − c > 0
Nên Δ < 0 với mọi a, b, c
Hay phương trình luôn vô nghiệm với mọi a, b, c
Đáp án cần chọn là: D
Theo định lí sin trong tam giác ta có: a sin A = 2 R ⇒ a = 2 R . sin A
Tương tự, b = 2RsinB; c= 2R.sin C
Theo đầu bài:
a + b =2c ⇒ 2Rsin A + 2Rsin B = 4Rsin C ⇒ sin A + sin B = 2sin C.
ĐÁP ÁN C
Đáp án D