K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

NV
27 tháng 1 2021

Để giới hạn đã cho là hữu hạn thì \(a=1\)

\(\lim\limits_{x\rightarrow+\infty}\left(x+b-\sqrt{x^2-6x+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+2bx+b^2-\left(x^2-6x+2\right)}{x+b+\sqrt{x^2-6x+2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2b+6\right)x+b^2-2}{x+b+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{2b+6+\dfrac{b^2-2}{x}}{1+\dfrac{b}{x}+\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}}=\dfrac{2b+6}{2}=b+3\)

\(\Rightarrow b+3=3\Rightarrow b=0\Rightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)

NV
27 tháng 3 2021

1.

\(\lim\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\lim\dfrac{5\sqrt{3+\dfrac{1}{n}}}{2\left(3+\dfrac{2}{n}\right)}=\dfrac{5\sqrt{3}}{6}\Rightarrow a+b=11\)

2.

\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax+b}{x-2}=6\) khi \(x^2+ax+b=0\) có nghiệm \(x=2\)

\(\Rightarrow4+2a+b=0\Rightarrow b=-2a-4\)

\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax-2a-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)+a\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+a+2\right)}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\left(x+a+2\right)=a+4\Rightarrow a+4=6\Rightarrow a=2\Rightarrow b=-8\)

\(\Rightarrow a+b=-6\)

NV
19 tháng 1

Giới hạn đã cho hữu hạn nên \(a=-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(b-x\right)^2-\left(x^2-6x+2\right)}{b-x+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(6-2b\right)x+b^2-2}{-x+\sqrt{x^2-6x+2}+b}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6-2b+\dfrac{b^2-2}{x}}{-1-\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}+\dfrac{b}{x}}=\dfrac{6-2b}{-2}=5\)

\(\Rightarrow b=8\)

Cả 4 đáp án đều sai, số lớn hơn là 8

8 tháng 11 2019

Chọn A.

Phương pháp: Sử dụng phương pháp nhân liên hợp.

7 tháng 2 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)

=> A

12 tháng 11 2018

Đáp án đúng : A

Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho

Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)

Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1

Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)

26 tháng 9 2021

Mình cảm ơn bạn ạ.

Tại vì thật ra mình cũng biết là cái tử nó phải bằng 0 rồi, nhưng cho bằng 0 xong mình không biết tính \(a^2+b^2\) thế nào.

Mong bạn giúp đỡ ạ !