Cho tam giác ABC vuông tại A, AB=6, AC=8. Quay hình tam giác ABC xung quanh trục BC ta được một khối tròn xoay có thể tích là:
A. 96 3 π
B. 96 π
C. 384 5 π
D. 1152 5 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Khi quay tam giác theo BC ta sẽ có được hai khối nón như hình vẽ.
Trong ΔABC, gọi H là chân đường cao của A đến BC. Ta có
Đáp án C
Khi quay tam giác theo BC ta sẽ có được hai khối nón như hình vẽ.
Trong ∆ A B C , gọi là H chân đường cao của A đến BC. Ta có
Đáp án A
Khi quay hình tam giác đó xung quanh đường thẳng AB một góc 3600 ta được một khối nón tròn xoay có đỉnh A, đường cao AB, bán kính đáy R = BC.
Kết luận V = 1 3 . π . BC 2 . AB = πa 3
Chọn C.
Phương pháp:
Dựng hình, xác định các hình tròn xoay tạo thành khi quay và tính tỉ số thể tích.
Cách giải:
Khi quay tam giác theo BC ta sẽ có được hai khối nón như hình vẽ.
Trong △ A B C , gọi là H chân đường cao của A đến BC. Ta có:
Thể tích hình nón đỉnh C là:
Thể tích hình nón đỉnh B là:
Khối tròn xoay có thể tích: