Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.
A. 72.
B. 108
B. 18.
D. 36.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương trình mặt phẳng (α): 2(x - 1) + 3(y + 2) + 5(z - 4)=0<=> 2x + 3y + 5z - 16=0.
Đáp án C
Phương pháp:
+) Phương trình đường thẳng đi điểm M ( x 0 ; y 0 ; z 0 ) và có VTPT n → = ( a ; b ; c ) có phương trình:
+) Hai vecto u → , v → cùng thuộc một mặt phẳng thì mặt phẳng đó có VTPT là: n → = u → , v →
Cách giải:
Mặt phẳng ( α ) chứa điểm M và trục Ox nên nhận n α → = O M → , u O x → là một VTPT.
Kết hợp với ( α ) đi qua điểm M(1;0;-1)
Đáp án C.
Mặt phẳng α nhận O M → ; u Ox → là một VTPT.
Mà O M → = 1 ; 0 ; − 1 u O x → = 1 ; 0 ; 0
⇒ O M → ; u Ox → = 0 ; − 1 ; 0 .
Kết hợp với α đi qua M(1;0;-1)
⇒ α : − y − 0 = 0 ⇔ y = 0.
Đáp án C
Phương trình mặt phẳng qua M và song song với ( α ) là:
3(x-3)-(y+1)+2(z+2)=0 ⇔ 3x-y+2z-6=0
Chọn B
Đặt A= (a;0;0), B= (0;b;0), C= (0;0;c) với a, b, c>0.
Khi đó phương trình mặt phẳng (α) là
Vì (α) đi qua M (1;1;4) nên
Thể tích của tứ diện OABC là
Áp dụng bất đẳng thức AM - GM ta có
Dấu bằng xảy ra khi a=b=3 ; c=12.
Vậy tứ diện OABC có thể tích nhỏ nhất bằng