cho a-y/b-y=a/b. cm x/y=a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng bài tập chứng minh dạng tổng quát rồi suy ra đpcm
Bài làm :
Xét dạng tổng quát : Cho \(\hept{\begin{cases}a+b=x+y\\a^4+b^4=x^4+y^4\end{cases}}\)
\(a^k+b^k=x^k+y^k\)(1)
+) Xét \(k=1\)ta có (1) hiển nhiên đúng
+) Xét \(k=2\)ta cũng thu được (1) đúng
Giả sử (1) đúng với \(k=n\)
Ta cần chứng minh (1) đúng với \(k=n+1\)
Khi đó : \(\left(1\right)\Leftrightarrow a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)
Xét \(a^{n+1}+b^{n+1}=\left(a^n+b^n\right)\left(a+b\right)-a^nb-ab^n\)
\(=\left(a^n+b^n\right)\left(a+b\right)-ab\left(a^{n-1}+b^{n-1}\right)\)
\(=\left(x^n+y^n\right)\left(x+y\right)-ab\left(x^{n-1}+y^{n-1}\right)\)(*)
Ta có \(x^2+y^2=a^2+b^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow-2xy=-2ab\Leftrightarrow xy=ab\)
Khi đó : (*)\(\Leftrightarrow\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=x^{n+1}+y^{n+1}\)
Ta có đpcm
Xem thêm : Câu hỏi của Nguyễn Thu Huyền - Toán lớp 8 | Học trực tuyến
Áp dụng tính chất các dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)
\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)
\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)
\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))
https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2
liệt phím? Mù mắt?
Đề bài đúng mà bạn..có sai đâu...mình tính vẫn ra được kết quả cuối cùng
a, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(a+c\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) (đpcm)
b, Từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\) hay ayz+bxz+cxy=0
Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{cxy+ayz+bzx}{abc}=1\)
Mà ayz+bxz+cxy=1
=>\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm)
Ta có: \(x+y=a+b\)
\(\Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\)
\(\Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\)
Mà \(x^2+y^2=a^2+b^2\)
\(\Rightarrow2xy=2ab\Rightarrow xy=ab\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)=\left(a+b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)
(đpcm)
giả sử \(\frac{x}{y}=\frac{a}{b}\)theo tính chất của dãy tỷ số bằng nhau ta có \(\frac{x}{y}=\frac{a}{b}=\frac{a-x}{b-x}\) điều phải chứng minh
bạn xem lại đề nhé! a-x chứ không phải a-y