K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

Hình như thiếu thiếu gì đó

12 tháng 9 2019

ko thiếu đâu bạn

14 tháng 10 2016

giai di 

14 tháng 10 2016

k roi giai

30 tháng 9 2018

Ta có: \(x+y=a+b\)

\(\Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\)

\(\Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\)

\(x^2+y^2=a^2+b^2\)

\(\Rightarrow2xy=2ab\Rightarrow xy=ab\)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)=\left(a+b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)

(đpcm)

22 tháng 9 2017

Có (a+b+c)2 = 3(ab+bc+ac)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac\)\(=0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\)\(=0\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\)\(=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a=b=c\)

18 tháng 6 2016

Từ \(a+b+c=0\Rightarrow a+b=-c\)

Xét hiệu \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

                                                     \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\left(I\right)\)

  Thay \(a+b=-c;a+b+c=0\left(GT\right)v\text{ào}\left(I\right)\) ta được 

\(a^3+b^3+c^3-3abc=\left(-c\right)^3+c^3-3ab.0\)

                                         \(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(\text{Đ}PCM\right)\)

Vậy \(a^3+b^3+c^3=3abc\) với \(a+c+b=0\)

28 tháng 6 2018

2/

2(x6+y6)-3(x4+y4)

=2[(x2)3+(y2)3 ] - 3x4-3y4

=2(x2+y2)(x4-x2y2+y4)-3x4-3y4

=2.1(x4-x2y2+y4)-3x4-3y4

=2x4-2x2y2+2y4-3x4-3y4

=-x4-2x2y2-y4

=-(x4+2x2y2+y4)

=-(x2+y2)

=-1