Tính
S = 1.2 + 2.3 + 3.4 + ...... + 99.100
( các bạn nên trả lời thật đầy đủ để được tick )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Bạn rút gọn chéo đi 2 với 2 ,3 với 3 cứ như thế còn mỗi 1/100. k nhé
S=1.2+ 2.3+.......+99.100
Nhân cả 2 vế với 3, ta được:
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> S = (99.100.101):3
S = 333300
Vậy S=333300
3S=1.2.(3-0)+2.3.(4-1)+...+99.100(101-98)
3S=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100
3S=(1.2.3+2.3.4+...+99.100.101)-(0.1.2+1.2.3+...+98.99.100)
3S=99.100.101-0.1.2
3S=99.100.101
S=\(\frac{99.100.101}{3}=333300\)
S = 1 . 2 + 2 . 3 + 3 . 4 + ...... + 99 . 100
Gấp S lên 3 lần ,ta có:
S . 3 = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + … + 99 . 100 . 3
S . 3 = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + … + 99 . 100 . ( 101 - 98 )
S . 3 = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + … + 99 . 100 . 101 - 98 . 99 . 100
S . 3 = 99 . 100 . 101
S = 99 . 100 .101 : 3
S = 33 . 100 . 101
S = 333300
S=1.2+2.3+3.4+4.5+....+99.100
3S=1.2.3+2.3.3+3.4.3+4.5.3+....+99.100.3
3S=1.2.3+2.3.(4-1)+3.4.(5-1)+4.5(6-3)+....+99.100(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-2.4.5+....+99.100.101-98.99.100
3S=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+.......+99.100.101
3S=99.100.101
3S=999900
S=999900:3
S=333300
S=1.2+2.3+3.4+4.5+...+99.100
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3S=99.100.101
S=(99.100.101):3=333300
Ta có: 3A=1.2.3+2.3.3+3.4.3+.....+99.100.3
3A=1.2.3+2.3.(4-1)+3.4..(5-2)+....+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+99.100.101-98.99.100
3A=99.100.101
A=\(\frac{99.100.101}{3}\)
A=333300
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{12.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{12}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=98.100.101
A=99.100.101 / 3
A=333300
Mình cho bạn dạng tổng quát nha
1.2+2.3+...+n.(n+1)=n(n+1)(n+2) / 3
3A=1.2.3+2.3.(4-1)+...........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+............+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
\(P=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(P=1-\frac{1}{100}\)
\(P=\frac{99}{100}\)
P = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+ 1/4 - 1/5 + ............. + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300