chứng minh rằng : 5 số tự nhiên liên tiếp chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?
Lời giải:
Gọi $A=a(a+1)(a+2)(a+3)(a+4)$ là tích 5 số tự nhiên liên tiếp $(a\in\mathbb{N})$
Để cm $A\vdots 120$ thì ta sẽ cm $A\vdots 3,5,8$
Thật vậy:
Nếu $a\vdots 3$ thì hiển nhiên $A\vdots 3$
Nếu $a$ chia 3 dư $1$ thì $a+2\vdots 3\Rightarrow A\vdots 3$
Nếu $a$ chia 3 dư $2$ thì $a+1\vdots 3\Rightarrow A\vdots 3$
Vậy $a\vdots 3$
-----------
Tương tự, xét số dư của $a$ khi chia $5$ ta cũng cm được $A\vdots 5$
-----------
CM $A\vdots 8$.
Nếu $a$ chẵn. Đặt $a=2k$ với $k$ tự nhiên. Khi đó:
$A=2k(2k+1)(2k+2)(2k+3)(2k+4)=8k(2k+1)(2k+3)\vdots 8$
Nếu $a$ lẻ. Đặt $a=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1)(2k+2)(2k+3)(2k+4)(2k+5)=4(2k+1)(2k+3)(2k+5)(k+1)(k+2)$
Vì $k+1, k+2$ là 2 số liên tiếp nên luôn có 1 số chẵn 1 số lẻ.
$\Rightarrow (k+1)(k+2)\vdots 2$
$\Rightarrow A=4(2k+1)(2k+3)(2k+5)(k+1)(k+2)\vdots 8$
Vậy $A\vdots 8$
Từ $A\vdots 3, 8,5$ suy ra $A\vdots 120$
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
Giải tương tự bài 3 số chia hết cho 6 đó bạn. Chia hết từ 2 => 5 sẽ chia hết cho 120
Gọi 5 số tự nhiên liên tiếp có dạng:a,a.1,a.2,a.3,a.4
Theo đề bài ta có:a.(a.1)+(a.2)+(a.3).(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120chia hết 120
suy ra :tích của 5 số tự nhiên liên tiếp chia hết cho 120
Gọi 5 số tự nhiên liên tiếp có dạng:a,a.1,a.2,a.3,a.4
Theo đề bài ta có:a.(a.1)+(a.2)+(a.3).(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120chia hết 120
Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120
Gọ 5 so tu nhien lien tiep co dang la :
a,a.1,a.2,a.3,a.4
Theo de bai ta co :
a.(a.1)+(a.2)+(a.3)+(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120 chia het cho 120
Suy ra tich cua 5 so tu nhien lien tiep chia het cho 120
****
_ Gọi 5 số tự nhiên liên tiếp đó là : a , a + 1 , a + 2 , a + 3 , a + 4 .
Theo bài ra , ta có :
a x ( a + 1 ) x ( a + 2 ) x ( a + 3 ) x ( a + 4 )
= a x 5 x ( 1 x 2 x 3 x 4 )
= a x 5 x 24
Mà 5 x 24 = 120 .
=> a chia hết cho 120 .
_ Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
Vô đường link này nè bạn
http://olm.vn/hoi-dap/question/144072.html
Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có : a . a+1 . a+2 . a+3. a+4
= (a+a+a+a+a) . (1.2.3.4)
= 5a .24
= 120a chia hết cho 120
=> a.(a+1).(a+2).(a+3).(a+4) chia hết cho 120
Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120
xin lỗi ,nhầm .Đáng lẽ ra phải là tích 5 số tự nhiên liên tiếp chia hết cho120