chứng minh rằng : 5(a+2007)3 + 15(a+2007)2 + 10(a+2007) luôn chia hết cho 30 ; với mọi a thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5(a+2007)3 + 15 (a+ 2007)2 + 10(a+2007)
=5(a+2007)3 + 5 (a+ 2007)2 + 10(a+ 2007)2 + 10(a+2007) = 5(a+2007)2 [ (a+ 2007) +1] +10(a+2007) [(a+2007) + 1]
=5(a+2007)2 (a+ 2008) +10(a+2007)(a+2008) = 5(a+2007)(a+2008) (a+2007 +2) = 5(a+2007)(a+2008) (a+2009)
nhận xét : tích trên chia hết cho 5
và a+2007; a+2008 ; a+2009 là các số nguyên liên tiếp nên tích của chúng chia hết cho 6
=> 5(a+2007)(a+2008) (a+2009) chia hết cho BCNN(5;6) = 30 => đpcm
Bài 2 thôi em dùng đồng dư cho chắc:v
a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)
Suy ra đpcm.
b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)
Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)
Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)
Suy ra đpcm
c) Do 41 là số nguyên tố và (2;41) = 1 nên:
\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)
Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)
Suy ra đpcm.
d) Tương tự
Ta có A=5+5^2+5^3+...+5^2007
=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2005+5^2006+5^2007)
=31x5+31x5^4+...+31x5^2005
=31x(5+5^4+...+5^2005) chia hết cho 31
Vậy A chia hết cho 31
A=3+32+33+34+35+...+32007=(3+32+33)+...+(32005+32006+32007)
A=3.(1+3+32)+...+32005.(1+3+32)
A=3.13+...+32005.13
A=13.(3+...+32005)
Vì 13.(3+...+32005) chia hết cho 13 =>A chia hết cho 13
A = 350.(252007 + 152006 + ... + 152 + 15 + 1) + 25
Đặt B = 152007 + 152006 + ... + 152 + 15
15B = 152008 + 152007 + ... + 153 + 152
15B - B = 152008 - 15
=> B = (152008 - 15)/4
=> A = 350.(152008 - 15/4 + 1) + 25
gọn thế này đủ chưa ?
Làm thì lm cho trót đi!! Nghĩ không ra phần b, mà tran thuy trang yêu cầu cao quá à!!
a)\(A-25=350.\left(15^{2007}+15^{2006}+...+15+1\right)\)
\(\frac{A-25}{350}=15^{2007}+15^{2006}+...+15+1\)
\(\frac{\left(A-25\right).15}{350}=15^{2008}+15^{2007}+...+15^2+15\)
\(\Rightarrow\frac{15.\left(A-25\right)}{350}-\frac{A-25}{350}=15^{2008}-1\)
\(\frac{15A-25.15-A+25}{350}=\frac{14A-25.14}{350}=15^{2008}-1\)
\(\frac{14\left(A-25\right)}{350}=15^{2008}-1\)
\(A-25=\frac{350\left(15^{2008}-1\right)}{14}=25.\left(15^{2008}-1\right)\)
\(\Rightarrow A=25.15^{2008}\)
b)15 chia hết cho 5 suy ra 152008 chia hết cho 52008
suy ra 25.152008 chia hết cho 25.52008=52010
a)\(A=25.15^{2008}\)
b)A=25.152008 chia hết cho 25.52008=52010 ,suy ra điều phải chứng minh