K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

A = 350.(252007 + 152006 + ... + 152 + 15 + 1) + 25

Đặt B = 152007 + 152006 + ... + 152 + 15

15B = 152008 + 152007 + ... + 153 + 152

15B - B = 152008 - 15

=> B = (152008 - 15)/4

=> A = 350.(152008 - 15/4 + 1) + 25

gọn thế này đủ chưa ?

14 tháng 12 2015

Làm thì lm cho trót đi!! Nghĩ không ra phần b, mà tran thuy trang yêu cầu cao quá à!!

14 tháng 12 2015

a)\(A-25=350.\left(15^{2007}+15^{2006}+...+15+1\right)\)

\(\frac{A-25}{350}=15^{2007}+15^{2006}+...+15+1\)

\(\frac{\left(A-25\right).15}{350}=15^{2008}+15^{2007}+...+15^2+15\)

\(\Rightarrow\frac{15.\left(A-25\right)}{350}-\frac{A-25}{350}=15^{2008}-1\)

\(\frac{15A-25.15-A+25}{350}=\frac{14A-25.14}{350}=15^{2008}-1\)

\(\frac{14\left(A-25\right)}{350}=15^{2008}-1\)

\(A-25=\frac{350\left(15^{2008}-1\right)}{14}=25.\left(15^{2008}-1\right)\)

\(\Rightarrow A=25.15^{2008}\)

b)15 chia hết cho 5 suy ra 152008 chia hết cho 52008

suy ra 25.152008 chia hết cho 25.52008=52010

14 tháng 12 2015

a)\(A=25.15^{2008}\)

b)A=25.152008 chia hết cho 25.52008=52010 ,suy ra điều phải chứng minh

21 tháng 12 2019

\(a ) \) \(Ta\) \(có :\) \(5^5 -5^4+5^3\)

\(= 5^3 . ( 5^2 - 5 + 1)\)

\(= 5^3 . 21\)\(⋮\)\(7\)

\(Vậy :\) \(5^5 - 5^4 + 5^3 \) \(⋮\)\(7\)

\(b )\) \(Ta\) \(có : \) \(16^5 + 2\)\(15\)

\(= ( 2^4 )^5 .2\)\(15\)

\(= 2\)\(20\) \(.2\)\(15\)

\(= 2\)\(15\) \(. ( 2 ^5 + 1 )\)

\(= 2\)\(15\) \(.33\)\(⋮\)\(33\)

\(Vậy : \) \(16^ 5 + 2 \)\(15\) \(⋮\)\(33\)

6 tháng 11 2015

a) 94260 - 35137 = 9424.15 - 35137 = (...6) - (...1) = (...5) có chữ số tận cùng alf 5 nên chia hết cho 5

6 tháng 11 2015

a) Xét chữ số tận cùng

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\) chia hết cho 33

30 tháng 7 2017

khó quá

30 tháng 7 2017

giup minh di ban

31 tháng 7 2017

1) B = 31 + 32 +...+ 32010

= (3+32) + (33 + 34) + ...+ (32009 + 32010 )

= 3(1+3) + 33(1+3) + ...+ 32009(1+3)

= 3.4 + 33.4 + ...+ 32009.4

= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)

B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)

= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)

= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)

Từ (1) và (2) => đpcm

b) Làm tương tự như câu a)

3)

a) Số chữ số chia hết cho 55 từ 11 đến 10001000

\(\dfrac{1000-5}{5}\)+1 =200 (số)

b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )

=> 1015 + 8 \(\equiv\) 0 (mod 9)

=> 1015 + 8 \(⋮\) 9

Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)

c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9

=> 102010 + 8 chia hết cho 9

d) Ta có : ab + ba

= 10a + b + 10b + a

= 11a + 11b

= 11(a+b) \(⋮\) 11

e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37

Chúc bn học tốt !

24 tháng 7 2016

a) Ta có : 

7160 + 7159 - 7158

= 7158 x (72 + 7 - 1)

= 7158 x (49 + 7 - 1)

= 7158 x 55 chia hết cho 55 (ĐPCM)

b) Ta có : 

165 + 215

= (24)5 + 215

= 220 + 215

= 215 x (25 + 1)

= 215 x (32 + 1)

= 215 x 33 chia hết cho 33 (ĐPCM)

c) Ta có : 

1253 + 2 x 254

= (53)3 + 2 x (52)4

= 59 + 2 x 58

= 58 x (5 + 2)

= 58 x 7 chia hết cho 7 (ĐPCM)

Ủng hộ mk nha ^_^ *_*

20 tháng 10 2018

b) \(16^5+2^{15}⋮33\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}.\left(1+2^5\right)\)

\(=2^{15}.33⋮33\)