cho hình bình hành ABCD có AB=2 .Gọi M,N lần lượt là trung điểm của AB và CD.
a)chứng minh tứ giác BMND là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
b: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
b: Xét tứ giác PBQD có
PB//QD
PB=QD
Do đó: PBQD là hình bình hành
Suy ra: PD//QB và PD=QB(1)
Xét tứ giác BPQC có
BP//QC
BP=QC
Do đó: BPQC là hình bình hành
mà BP=BC
nên BPQC là hình thoi
=>PC và QB cắt nhau tại trung điểm của mỗi đường
hay K là trung điểm của BQ
=>KQ=BQ/2(2)
Ta có: APQD là hình thoi
nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường
=>I là trung điểm của PD
=>IP=PD/2(3)
Từ (1), (2) và (3) suy ra IP//QK và IP=QK
hay IPKQ là hình bình hành
mà \(\widehat{PIQ}=90^0\)
nên IPKQ là hình chữ nhật
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành