K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(\text{Đặt }\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k\text{ ; }y=3k\text{ ; }z=5k\)

thay x=2k ; y=3k ; z=5k vào x.y.z=810 ta được:

2k.3k.5k=810

30k3=810

k3=27

=>k=3 hoặc k=-3

với k=3 thì :

x=2.3=6

y=3.3=9

z=5.3=15

với k=-3 thì:

x=2.(-3)=-6

y=3.(-3)=-9

z=3.(-5)=-15

17 tháng 7 2015

bn trieu dang lam sai rồi nếu k=-3 thì xyz=-810

25 tháng 11 2015

a)x/4=y/3=z/9

nên x/4=3y/9=4z/36

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)

Do đó, x/4=2 nên x=4*2=8

         y/3=2 nên x=2*3=6

         z/9=2 nên z=9*2=18

b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k

=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3

mà x*y*z=20 nên 540*k3=20

k3=20/540=1/27=(1/3)^3

=>k=1/3

=>x=12*1/3=4

    y=9*1/3=3

    z=5*1/3=5/3

c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9

Áp dụng tc dãy tỉ số bằng nhau, ta được:

 x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2

                       nên x=15 hoặc x=-15

         y2/49=9 nên y2=9*49=441=212=(-21)2

                       nên y=21 hoặc y=-21

         z2/9=9 nên z2=9*9=92 =(-9)2

                       nên z=9 hoặc z=-9

20 tháng 8 2019

Lời giải :

a) Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{2}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=5k\\y=4k\\z=2k\end{cases}}\)

Ta có : \(xyz=40k^3=240\)

\(\Leftrightarrow k^3=6\)

\(\Leftrightarrow k=\sqrt[3]{6}\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{2}=\sqrt[3]{6}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\sqrt[3]{6}\\y=4\sqrt[3]{6}\\z=2\sqrt[3]{6}\end{cases}}\)

Vậy....

20 tháng 8 2019

b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{9}=\frac{y}{6}\)

Ta cũng có \(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{6}=\frac{z}{4}\)

Khi đó : \(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=\frac{x-y+z}{9-6+4}=\frac{21}{7}=3\)

\(\Leftrightarrow\hept{\begin{cases}x=27\\y=18\\z=12\end{cases}}\)

Vậy...