Cho tam giác ABC vuông tại A, đường phân giác BD. Tính AB, BC biết AD = 4 cm và DC = 5 cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất đường phân giác BD của tam giác
ABC, ta có:
với t > 0
Áp dụng định lý Py – ta – go ta có:
B C 2 = A C 2 + A B 2 hay ( 5 t ) 2 = 9 2 + ( 4 t ) 2 ⇔ ( 3 t ) 2 = 9 2 ⇒ t = 3 (vì t > 0 )
Khi đó: AB = 12cm, BC = 15cm
Lời giải:
Áp dụng tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}$
$\Leftrightarrow \frac{3}{DC}=\frac{AB}{5}$
$\Rightarrow 15=AB.DC=AB(AC-AD)=AB(AC-3)(1)$
Mà: $AB^2+AC^2=BC^2=25(2)$
Từ $(1); (2)\Rightarrow (\frac{15}{AC-3})^2=AB^2=25-AC^2$
$\Leftrightarrow AC^4-6AC^3-16AC^2+150AC=0$
$\Leftrightarrow AC^3-6AC^2-16AC+150=0$
PT giải ra số khá xấu. Bạn xem lại đề.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
Áp dụng tính chất đường phân giác BD của tam giác ABC, ta có:
với t > 0
Áp dụng định lý Py – ta – go ta có:
Khi đó: AB = 12cm, BC = 15cm