K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Vẽ một n-giác lồi, kẻ các đường chéo xuất phát từ một đỉnh của n-giác lồi thì chia đa giác đó thành (n - 2) tam giác.

Tổng các góc của n-giác lồi bằng tổng các góc của (n - 2) tam giác bằng (n - 2).180o.

Hình n-gíác đều có n góc bằng nhau nên số đo mỗi góc bằng:

n - 2 . 180 0 n

a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)

b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)

Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)

6 tháng 12 2016

tai vi cu n giac tao thanh n-2 tam giac

6 tháng 12 2016

HS tự CM

7 tháng 10 2017

a)Vẽ các đường chéo xuất phát từ một đỉnh của n - giác, ta được (n - 2) tam giác.

Tổng các góc của hình n - giác bằng tổng các góc của (n - 2) tam giác, tức là có số đo bằng (n - 2).1800.

b) ta có: (n - 2).1800 = (12 - 2 ).1800 = 18000

22 tháng 2 2018

a) Vẽ các đường chéo từ đỉnh của n-giác , ta được ( n - 2 ) tam giác .

Tổng các góc của hình n-giác bằng tổng các góc của ( n - 2 ) tam giác và có số đo bằng ( n - 2 ) . 1800 

Vậy tổng các góc ngoài của hình n-giác bằng ( n - 2 ) . 1800 

b) Tổng số đo của góc trong và góc ngoài tại 1 đỉnh của hình n-giác bằng 1800 . Tổng số đo của góc trong và góc ngoài tại n đỉnh của hình n-giác bằng n.1800 . Tổng các góc của hình n-giác bằng ( n - 2 ) . 1800 

Vậy tổng các góc ngoài của hình n-giác bằng : n . 1800 - ( n - 2 ) . 1800 = 3600 . 

22 tháng 2 2018

Nguyễn Thu Thủy làm đúng rồi nha khỏi làm lại )))

24 tháng 6 2016

từ hình n giác vẽ các đường chéo từ 1 đỉnh bất kỳ của đa giác đó

khi đó các đuờng chéo và các cạnh tạo thành (n-2) tam giác

nên ta được tổng số đo các góc của n giác chính là tổng số đo của ( n -2) tam giác 

suy ra : tổng số đo các góc là :  ( n- 2) . 180 

24 tháng 12 2021

Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)

Giả sử đúng với \(n=k\)

\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)

Cần cm nó cũng đúng với \(n=k+1\)

\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)

Vậy BĐT đúng với \(n=k+1\)

\(\RightarrowĐpcm\)

12 tháng 2 2018

Áp dụng định lý PITAGO :

Ta có : \(c^2=a^2+b^2\)

Nhân cả 2 vế với n thì ta có :

\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)

Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)

2 tháng 3 2018

Làm đúng cho sai không công bằng cút nào nhé trẩu

13 tháng 11 2021

Cái này là định lí rồi bạn

13 tháng 11 2021

trong sách có nha