K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: DE=9cm

15 tháng 10 2021

Ta có \(\sin\widehat{F}=\dfrac{ED}{EF}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow EF=4\cdot\dfrac{2}{\sqrt{3}}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\\ DF=\sqrt{EF^2-DE^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)

a: Xét ΔEDB vuông tại D và ΔEIB vuông tại I có

EB chung

góc DEB=góc IEB

=>ΔEDB=ΔEIB

b: Xét ΔBDH vuông tại D và ΔBIF vuông tại I có

BD=BI

góc DBH=góc IBF

=>ΔBDH=ΔBIF

=>BH=BF

=>ΔBHF cân tại B

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

góc DEC=góc HEC

=>ΔEDC=ΔEHC

b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có

CD=CH

góc DCK=góc HCF

=>ΔCDK=ΔCHF

=>CK=CF

=>ΔCKF cân tại C

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

a: DF=15cm