K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(DF=\dfrac{EF^2}{IF}=15\left(cm\right)\)

a: DE=9cm

Áp dụng định lí Pytago vào ΔEKF vuông tại K, ta được:

\(EF^2=EK^2+KF^2\)

\(\Leftrightarrow KF^2=20^2-12^2=256\)

hay KF=16(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔFED vuông tại E có EK là đường cao ứng với cạnh huyền FD, ta được:

\(EF^2=FK\cdot FD\)

\(\Leftrightarrow FD=\dfrac{20^2}{16}=\dfrac{400}{16}=25\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDEF vuông tại E, ta được:

\(FD^2=EF^2+ED^2\)

\(\Leftrightarrow ED^2=25^2-20^2=225\)

hay ED=15(cm)

a: DH=căn DE^2-EH^2=12cm

Xét ΔDEF vuông tại D có DH là đường cao

nên DE^2=EH*EF
=>EF=15^2/9=25cm

DF=căn 25^2-15^2=20cm

HF=25-9=16cm

b: C=15+20+25=40+20=60cm

S=1/2*15*20=10*15=150cm2

DM=EF/2=25/2=12,5cm

c: Xét ΔEDF có HK//DF

nên HK/DF=EH/EF

=>HK/20=9/25

=>HK=180/25=7,2cm

22 tháng 10 2016

đây là toàn 9 ak

3 tháng 7 2021

- Áp dụng định lý pitago vào tam giác DEF vuông tại D :

\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI

\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )

Vậy ...

3 tháng 7 2021

pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)

áp dụng hệ thức lượng

\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)

\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)

\(=>FI=45-16,2=28,8cm\)

 

25 tháng 11 2023

ΔFED vuông tại E

=>\(EF^2+ED^2=FD^2\)

=>\(EF^2+12^2=20^2\)

=>\(EF^2=400-144=256\)

=>EF=16(cm)

Xét ΔFED vuông tại E có EK là đường cao

nên \(EK\cdot DF=ED\cdot EF\)

=>\(EK\cdot20=12\cdot16=192\)

=>EK=9,6(cm)

XétΔFED vuông tại E có EK là đường cao

nên \(DK\cdot DF=DE^2\)

=>\(DK\cdot20=12^2=144\)

=>DK=144/20=7,2(cm)