Tìm x: a.(x-2)(5-x)=0 b.(x-1)(x2+1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 2)(x + 3) < 0 (1)
Do x là số nguyên nên x - 2 < x + 3
(1) x - 2 < 0 và x + 3 > 0
*) x - 2 < 0
x < 0 + 2
x < 2
*) x + 3 > 0
x > 0 - 3
x > -3
Vậy -3 < x < 2
Lời giải:
a.
PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.
PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$
$\Leftrightarrow -3-6x=0$
$\Leftrightarrow 6x=-3$
$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Lời giải:
a. $22-(-x)=12$
$22+x=12$
$x=12-22=-10$
b. $x(x+2)=0$
$\Rightarrow x=0$ hoặc $x+2=0$
$\Rightarrow x=0$ hoặc $x=-2$
c. $(x+1)(x+9)=0$
$\Rightarrow x+1=0$ hoặc $x+9=0$
$\Rightarrow x=-1$ hoặc $x=-9$
d.
$x^2+3x=0$
$\Rightarrow x(x+3)=0$
$\Rightarrow x=0$ hoặc $x+3=0$
$\Rightarrow x=0$ hoặc $x=-3$
a) 22 - (-x) = 12
x = 12 - 22
x = -10
b) x.(x + 2) = 0
x = 0 hoặc x + 2 = 0
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = -2; x = 0
c) (x + 1)(x + 9) = 0
x + 1 = 0 hoặc x + 9 = 0
*) x + 1 =.0
x = 0 - 1
x = -1
*) x + 9 = 0
x = 0 - 9
x = -9
Vậy x = -9; x = -1
d) x² + 3x = 0
x(x + 3) = 0
x = 0 hoặc x + 3 = 0
*) x + 3 = 0
x = 0 - 3
x = -3
Vậy x = -3; x = 0
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
\(a,\Leftrightarrow\left(2x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x^3-27-x^3+4x=1\\ \Leftrightarrow4x=28\Leftrightarrow x=7\\ c,\Leftrightarrow4x^2-4x-8=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow2x^2+6x+x+3=0\\ \Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
(x - 2)(5 - x) = 0
=> x - 2 = 0 hoặc 5 - x = 0
x - 2 = 0 => x= 0 + 2 = 2
5 - x= 0 => x= 5 - 0 = 5
Vậy x thuộc {2;5}
b) (x - 1)(x2 + 1) = 0
x2 \(\ge\) 0 => x2 + 1 \(\ne\) 0
=> x - 1 = 0
x = 0 + 1 =1
Vậy x = 1