Mặt phẳng A B ' C ' chia khối lăng trụ A B C . A ' B ' C ' thành các khối đa diện nào?
A. Một khối chóp tam giác và một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác và một khối chóp ngũ giác.
D. Hai khối chóp tứ giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp : Dựng thiết diện, xác định hai phần cần tính thể tích.
Sử dụng phân chia và lắp ghép các khối đa diện.
Cách giải : Gọi E = MN ∩ B'C'
Kéo dài MP cắt AB tại D, cắt AA ‘ tại F.
Nối NF, cắt AC tại G.
Do đó thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) là NEPDG.
Gọi V1 là thể tích khối đa diện chứa đỉnh A’ ta có :
Ta có:
=> D là trung điểm của AB
Dễ dàng chứng minh được ∆ADG đồng dạng ∆A’MN theo tỉ số 1 3
Áp dụng định lí Menelaus trong tam giác A’B’C’ ta có:
Áp dụng định lí Menelaus trong tam giác A’MN ta có:
Vậy
=> V 1 V 2 = 49 95
Đáp án là A
Do AA' = 4A'M, BB' = 4B'N nên suy ra
Mặt khác, ta có
Từ (1), (2)
Vậy
Từ đó suy ra V 1 V 2 = 1 5