( n + 3 ) : ( n + 7 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7 + 72 + 73 + .........+ 7n-1 + 7n
7A = 72 + 73 +..........+ 7n-1 + 7n + 7n-1
7A - A = 7n+1 - 7
6A = ( 7n+1 - 7)
A = (7n+1 - 7) : 6
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
6/ \(\frac{2n-4}{n}=\frac{2n}{n}-\frac{4}{n}\) \(=2-\frac{4}{n}\)
Để 2n - 4 chia hết cho n thì 4 chia hết cho n
\(\Rightarrow\) n = 1; n = 2; n = 4
7/ \(\frac{35+12n}{n}=\frac{35}{n}+\frac{12n}{n}=\frac{35}{n}+12\)
Để 35 + 12n chia hết cho n thì 35 chia hết cho n
\(\Rightarrow\) n = 1; n = 5; n = 7; n = 35
1/ Để 7 \(⋮\) n (n \(\in N\)) thì n = 1; n = 7
2/ Để 7 \(⋮\) \(\left(n-1\right)\) thì \(n-1=1;n-1=-1;n-1=7;n-1=-7\)
*) \(n-1=1\)
n = 1 + 1
n = 2 (thỏa mãn n là số tự nhiên)
*) \(n-1=-1\)
\(n=-1+1\)
n = 0 (thỏa mãn n là số tự nhiên)
*) \(n-1=7\)
n = 7 + 1
n = 8 (thỏa mãn n là số tự nhiên)
*) \(n-1=-7\)
\(n=-7+1\)
\(n=-6\) (không thỏa mãn n là số tự nhiên)
Vậy n = 8; n = 2; n = 0
Lời giải:
$S=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{(n+3)-n}{n(n+3)}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}$
$=1-\frac{1}{n+3}<1$
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm