Giả sử biết số đúng là 3,254. Sai số tuyệt đối khi quy tròn số này đến hàng phần trăm là:
A. 0,04
B. 0,004
C. 0,006
D. 0,014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi quy tròn số 3,141 đến hàng phần trăm ta được số 3,14 và sai số tuyệt đối của số quy tròn là\(|3,141{\rm{ }}-{\rm{ }}3,14|{\rm{ }} = {\rm{ }}0,001{\rm{ }} < 0,005\).
Do vậy, số quy tròn 3,14 là số gần đúng của 3,141 với độ chính xác 0,005.
- Làm tròn số 8 316,4 đến hàng chục
Số làm tròn là số 1, số bên phải số 1 là số 6>5
=> Tăng thêm 1 đơn vị
=> Số quy tròn là: 8 320
Sai số tuyệt đối: \(\left| {8320 - 8316,4} \right| = 3,6\)
- Làm tròn số 9,754 đến hàng phần trăm
Số làm tròn là số 5, số bên phải số 5 là số 4<5
=> Giữ nguyên 5 và bỏ các số bên phải đi.
=> Số quy tròn là: 9,75
Sai số tuyệt đối: \(\left| {9,754 - 9,75} \right| = 0,004\)
Số quy tròn của số 17236,4 đến hàng chục là 17240.
Sai số tuyệt đối khi quy tròn số 17236,4 đến hàng chục là:
Δ = 17236,4 − 17240 = 3,6
Đáp án D
Đáp án: D
Vì sai số tuyệt đối không vượt quá 0,01, tức là độ chính xác đến hàng phần trăm nên ta quy tròn số đến hàng phần chục, số quy tròn của a là 173,5.
a) Quy tròn số \(\overline a = \sqrt 3 \) đến hàng phần trăm, ta được số gần đúng là \(a = 1,73\)
Vi \(a < \overline a < 1,735\) nên \( \overline a -a < 1,735 -1,73 = 0,005\) do đó sai số tuyệt đối là
\({\Delta _a} = \left| {\overline a - a} \right| < 0,005.\)
Sai số tương đối là \({\delta _a} \le \frac{{0,005}}{{1,73}} \approx 0,3\% \)
b) Hàng của chữ số khác 0 đầu tiên bên trái của d=0,003 là hàng phần nghìn.
Quy tròn \(\overline a \) đến hàng phần nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,732\).
c) Độ chính xác đến hàng phần chục nghìn
Quy tròn \(\overline a \) đến hàng phần chục nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,7321\).
Đáp án B