K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2021

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=105=3.35=5.21=7.15\)

+ Với \(\left(x-y\right)\left(x+y\right)=3.35\Rightarrow x-y=3;x+y=35\Rightarrow x=19;y=16\)

+ Với \(\left(x-y\right)\left(x+y\right)=5.21\Rightarrow x-y=5;x+y=21\Rightarrow x=13;y=8\)

+ Với \(\left(x-y\right)\left(x+y\right)=7.15\Rightarrow x-y=7;x+y=15\Rightarrow x=11;y=4\)

24 tháng 6 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

26 tháng 11 2021

sai r nha tại x là nguyên dương nên khác 0 chứ :)))

DD
7 tháng 11 2021

\(x^2-y^2=105\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=105=3.5.7\)

Có \(x,y\)nguyên dương nên \(x-y,x+y\)là các ước dương của \(105\)\(x-y< x+y\).

Ta có bảng giá trị: 

x-y1357
x+y105352115
x53191311
y521684
10 tháng 2 2019

\(x^2-y^2=2011\)

\(\Leftrightarrow(x-y)(x-y)=2011\)

Vì 2011 là số nguyên tố nên ước nguyên của 2011 chỉ có thể là \(\pm1;\pm2011\). Từ đó suy ra nghiệm \((x;y)\)là : \((1006;1005);(1006;-1005);(-1006;-1005);(-1006;1005)\).

P/S : Hông chắc :>

10 tháng 2 2019

mình cx ko biết đúng hay sai nên k đúng cho bạn :)))))

8 tháng 8 2016

\(x^2+y^2+z^2=2xyz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)

8 tháng 8 2016

2xyz chứ có phải 2xy đâu :)

NV
24 tháng 1 2022

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

14 tháng 11 2024

dòng 3 dưới lên sao lại suy ra 2^a = 2 ạ

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo