Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC
a) Chứng minh tứ giác BFEC nội tiếp được đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét tứ giác BHCD có:
M là trung điểm của 2 đường chéo HD và BC
⇒ Tứ giác BHCD là hình bình hành
Mà BE ⊥ AC ; FC ⊥ AB
⇒ CD ⊥ AC ; DB ⊥ AB
Xét tứ giác ABDC có:
∠(ABD) = ∠(ACD) = 90 0
∠(ABD ) + ∠(ACD) = 180 0
⇒ Tứ giác ABDC nội tiếp được đường tròn
c)Cm:tứ giác ABDC nt đường tròn
Hình tự vẽ nha
Xét tg HBDC,có:
HM=MD(gt)
BM=MC(gt)
Mà M là gđ của HD và BC
Suy ra:tg HBDC là hbh
Suy ra: BHC=BDC(tc hbh)
Ta có:FHE=BHC(đối đỉnh)
Suy ra:BDC=FHE (1)
Xét tg AFHE,có:
AFH + AEH=90°+90°=180°
Mà 2 góc ở vị trí đối nhau
Suy ra:tg AFHE nội tiếp
Suy ra:FAE +FHE=180° (2)
Từ (1)và(2)suy ra:BAC+BDC=180°
Mà 2 góc ở vị trí đối nhau
Suy ra:tgABDC nội tiếp đường tròn(đpcm)
Mong mn thông cảm, viết góc vào hộ mình nha,cảm ơn
Chúc mn học tốt!
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a:
H đối xứng K qua BC
=>BH=BK CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
HC=KC
BC chung
=>ΔBHC=ΔBKC
=>góc BHC=góc BKC
góc BHC=180 độ-góc HBC-góc HCB
=90 độ-góc HBC+90 độ-góc HCB
=góc ABC+góc ACB
=180 độ-góc BAC
=>góc BAC+góc BHC=180 độ
=>góc BAC+góc BKC=180 độ
=>ABKC là tứ giác nội tiếp
b: Xét (O) có
ΔABM nội tiếp
AM là đường kính
=>ΔABM vuông tại B
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kinh
=>ΔACM vuông tại C
=>CM//BH
mà BM//CH
nên BHCM là hình bình hành
=>CB căt HM tại trung điểm của mỗi đường
=>H,I,M thẳng hàng
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc đối
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét tứ giác BHCK có
I là trung điểm của đường chéo BC(gt)
I là trung điểm của đường chéo HK(H đối xứng với K qua I)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay BH//CK
Suy ra: BE//CK
mà BE⊥AC(gt)
nên CK⊥AC
⇔C nằm trên đường tròn đường kính AK
mà C,A cùng thuộc (O)
nên AK là đường kính của (O)
hay A,O,K thẳng hàng(đpcm)
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC
=>góc BHC+góc BAC=180 độ
H đối xứng K qua BC
=>BH=BK và CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
CH=CK
BC chung
=>ΔBHC=ΔBKC
=>góc BKC=góc BHC
=>góc BKC+góc BAC=180 độ
=>ABKC nội tiếp
b: Gọi Ax là tiếp tuyến của (O) tại A
=>góc xAC=góc ABC=góc AEF
=>EF//Ax
=>EF vuông góc OA
c: Xét tứ giác BHCA' có
BH//CA'
BA'//CH
=>BHCA' là hbh
=>H,I,A' thẳng hàng
a) Xét tứ giác BFEC có:
∠(BFC) = ∠(BEC) = 90 0 (gt)
Mà 2 góc này cùng nhìn cạnh BC
⇒ Tứ giác BFEC nội tiếp được đường tròn