Cho tam giác MNP có MN MP, gọi I là trung điểm của NPa Chứng minh N =P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NP=căn 3^2+4^2=5cm
b: Xét ΔNMK vuông tại M và ΔNHK vuông tại H có
NK chung
góc MNK=góc HNK
=>ΔNMK=ΔNHK
c: Xét ΔKMI vuông tại M và ΔKHP vuông tại H có
KM=KH
góc MKI=góc HKP
=>ΔKMI=ΔKHP
=>KI=KP
=>KP>MI
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
b: Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường trung tuyến
c: Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
a, Do F là trung điểm NP
E là trung điểm MP
=> EF là đường trung bình
=> \(EF=\dfrac{1}{2}MN=\dfrac{1}{2}.56=28\left(cm\right)\)
Diện tích tam giác MNP
\(S_{MNP}=\dfrac{1}{2}MN.MP=\dfrac{1}{2}.56.12=336\left(cm^2\right)\)
b,
Xét tứ giác NDEM có
ND // ME (gt)
DE // MN ( cmt)
=> NDEM là hình bình hành
mà có góc \(\widehat{NME}=90^o\)
=> NDEM là hình chữ nhật
c, NDEM là hình chữ nhật
=> ME = ND
mà ME = EP (do E là trung điểm MP)
=> ND = EP
Xet tứ giác NDPE có
ND = EP (cmt)
ND // EP (gt)
=> NDPE là hình bình hành