tìm 2 chữ số tận cùng của 2999;3999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3^{1989}=3^{1988}.3=\left(3^4\right)^{497}.3=\left(...1\right).3=\left(...3\right)\)
b)\(2^{2999}+3^{2999}=2^{4.749}.2^3+3^{4.749}.3^3=\left(...6\right).8+\left(...1\right).27\)
\(=\left(...8\right)+\left(...7\right)\)
\(=\left(...5\right)\)
a) A = 31989 = 81497.3 có chữ số tận cùng là 1.3 = 3.
b) B = 2999 + 32999 = 16249 . 8 ( có chữ số tận cùng là 8 ) + 81749 . 27 ( có chữ số tận cùng là 7 ). Vậy B có chữ số tận cùng là 5.
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
Ta có: 32 ≡ −1(mod10)⇒(32)499.3≡(−1)499.3 ≡ −3(mod10) ⇒ chữ số tận cùng của 3999 là 7 (vì 7 ≡ −3(mod10).
Ta có:
220 − 1= (210 − 1)(210 + 1)
Mà 210 + 1 = 1025⋮5
⇒220 − 1⋮5
⇒21000 − 1⋮5
Do đó: 21000 tận cùng là 26,51,76
Mà 21000⋮4 ⇒21000 tận cùng là 76
⇒2999 tận cùng là 38 hay 88
Vậy 2999 tận cùng là 8.