K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

Muốn | x-1 | + 2020 có GTNN thì | x - 1 | phải nhỏ nhất

Mà |x-1| luôn lớn hơn hoặc bằng 0 

Suy ra |x-1| = 0

x-1 = 0

x=1

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

27 tháng 1 2023

vì sao dấu "=" xảy ra khi ab ≥0 thế ạ ?

 

9 tháng 6 2021

`|x-1|+2020|x-2|+|x-3|`

`=|x-1|+|3-x|+2020|x-2|`

Áp dụng BĐT `|A|+|B|>=|A+B|`

`=>|x-1|+|3-x|>=|x-1+3-x|=2`

Mà `|x-2|>=0=>2020|x-2|>=0`

`=>|x-1|+2020|x-2|+|x-3|>=2`

Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$

`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$

`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$

`<=>x=2`

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$

$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$

$\Rightarrow P\geq 4$

Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$

Hay $x=2022$

11 tháng 11 2021

Ta có \(\left|x+2020\right|\ge0\)

dấu "=" xảy ra \(\Leftrightarrow x=-2020\)

\(\Rightarrow\left|x+2020\right|+75\ge75\)

dấu "=" xảy ra \(\Leftrightarrow x=-2020\)

Vậy \(A_{min}\Leftrightarrow x=-2020\)

24 tháng 6 2019

\(C=\frac{2020}{2020-2x-x^2}=\frac{2020}{2021-\left(x+1\right)^2}\ge\frac{2020}{2021}\)

Dấu \("="\) xảy ra khi \(x=-1\)