K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông AHC ta có:

A C 2 = A H 2 + H C 2

Suy ra: H C 2 = A C 2 - A H 2 = 13 2 - 12 2  = 25 => HC = 5 (cm)

Ta có: BC = 2.HC = 2.5 = 10 (cm)

19 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ AH ⊥ xy

Ta có: AH = 12cm

Bán kính đường tròn tâm I là 13cm nên R = 13cm

Mà AH = d = 12cm

Nên suy ra d < R

Vậy (A; 13cm) cắt đường thẳng xy tại hai điểm phân biệt B và C

24 tháng 6 2017

Vị trí tương đối của đường thẳng và đường tròn

Vị trí tương đối của đường thẳng và đường tròn

21 tháng 11 2023

a: Kẻ MH vuông góc xy tại H, gọi AB là đường kính của (M)

d(M;xy)=6cm

=>MH=6cm

AB là đường kính của (M)

=>MA=MB=10cm và AB=2*10=20(cm)

Vì MH<MA

nên xy là cát tuyến của (M)

=>(M) cắt xy tại 2 giao điểm

b: 

P,Q là 2 giao điểm của (M) với xy

=>MP=MQ=10cm

ΔMPQ cân tại M

mà MH là đường cao

nên H là trung điểm của PQ

ΔMHP vuông tại H

=>\(MP^2=MH^2+HP^2\)

=>\(HP^2=10^2-6^2=64\)

=>HP=8(cm)

H là trung điểm của PQ

=>\(PQ=2\cdot PH=16\left(cm\right)\)

a: ΔOMN cân tại O có OD là trung tuyến

nên OD vuông góc NA

góc ODA=góc OBA=90 độ

=>ODBA nội tiếp

b; Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

19 tháng 9 2018

a/ Xét tg vuông AOH và tg vuông IOK có

\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)

\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)

b/

Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)

Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)

Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi

\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi

Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định

19 tháng 11 2018

bạn ơi ko có hingf ak

25 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi BD, AE là đường cao của ∆ MAB. Ta có ΔMAE =  ∆ MBD (cạnh huyền – góc nhọn) nên ME = MD,  ∆ MHE =  ∆ MHD (cạnh huyền – cạnh góc vuông) nên  ∠ (EMH) = ∠ (DMH). MH và MO đều là tia phân giác của góc AMB nên M, H, O thẳng hàng.