Cho điểm A cách đường thẳng xy là 12cm. Vẽ đường tròn (A ; 13cm). Gọi hai giao điểm nói trên là B và C. Tính độ dài BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH ⊥ xy
Ta có: AH = 12cm
Bán kính đường tròn tâm I là 13cm nên R = 13cm
Mà AH = d = 12cm
Nên suy ra d < R
Vậy (A; 13cm) cắt đường thẳng xy tại hai điểm phân biệt B và C
a: Kẻ MH vuông góc xy tại H, gọi AB là đường kính của (M)
d(M;xy)=6cm
=>MH=6cm
AB là đường kính của (M)
=>MA=MB=10cm và AB=2*10=20(cm)
Vì MH<MA
nên xy là cát tuyến của (M)
=>(M) cắt xy tại 2 giao điểm
b:
P,Q là 2 giao điểm của (M) với xy
=>MP=MQ=10cm
ΔMPQ cân tại M
mà MH là đường cao
nên H là trung điểm của PQ
ΔMHP vuông tại H
=>\(MP^2=MH^2+HP^2\)
=>\(HP^2=10^2-6^2=64\)
=>HP=8(cm)
H là trung điểm của PQ
=>\(PQ=2\cdot PH=16\left(cm\right)\)
a: ΔOMN cân tại O có OD là trung tuyến
nên OD vuông góc NA
góc ODA=góc OBA=90 độ
=>ODBA nội tiếp
b; Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
a/ Xét tg vuông AOH và tg vuông IOK có
\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)
\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)
b/
Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)
Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)
Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi
\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi
Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định
Gọi BD, AE là đường cao của ∆ MAB. Ta có ΔMAE = ∆ MBD (cạnh huyền – góc nhọn) nên ME = MD, ∆ MHE = ∆ MHD (cạnh huyền – cạnh góc vuông) nên ∠ (EMH) = ∠ (DMH). MH và MO đều là tia phân giác của góc AMB nên M, H, O thẳng hàng.
Áp dụng định lí Pitago vào tam giác vuông AHC ta có:
A C 2 = A H 2 + H C 2
Suy ra: H C 2 = A C 2 - A H 2 = 13 2 - 12 2 = 25 => HC = 5 (cm)
Ta có: BC = 2.HC = 2.5 = 10 (cm)