Cho các số a,b,c thỏa mãn: \(\frac{a}{2022}=\frac{b}{2021}=\frac{c}{2020}\).Chứng minh \(4\times\left(a-b\right)\times\left(b-c\right)=\left(c-a\right)^2\)
ACE làm hộ mik vs mik đg cần làm hộ mik đi các hảo thần đồng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
Cách khác: Áp dụng BĐT AM-GM ta có:
\(1+\frac{1}{a}=\frac{1}{a}\left(a+b+c+a\right)\ge\frac{1}{4}4\sqrt[4]{a^2bc}\)
\(\Rightarrow1+\frac{1}{a}\ge\frac{4}{a}\sqrt[4]{\frac{a^4bc}{a^2}}=4\sqrt[4]{\frac{bc}{a^2}}\)
Tương tự cũng có: \(1+\frac{1}{b}\ge4\sqrt[4]{\frac{ca}{b^2}};1+\frac{1}{c}\ge4\sqrt[4]{\frac{ab}{c^2}}\)
\(\Rightarrow VT\ge4\sqrt[4]{\frac{bc}{a^2}}4\sqrt[4]{\frac{ca}{b^2}}4\sqrt[4]{\frac{ab}{c^2}}=64\)
Còn tỷ tỷ cách đây cần thì IB nhé !!
Ta cần chứng minh \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(\Leftrightarrow1+abc+ab+bc+ca+a+b+c\ge1+3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c\ge3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Thật vậy ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\)
\(\ge\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}\ge64\).Từ \(a+b+c=1\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\frac{1}{\sqrt[3]{abc}}+1\right)^3\ge64\)
Đẳng thức xảy ra khi a=b=c=1/3
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)
\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\) (vì abc=1) (*)
Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\) (vì abc=1)
=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\) (**)
Từ (*), (**)=> đpcm
Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3
\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
Tương tự rồi cộng lại:
\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1
\(\frac{a}{2022}=\frac{b}{2021}=\frac{c}{2020}=\frac{a-b}{2022-2021}=a-b\)
\(\frac{a}{2022}=\frac{b}{2021}=\frac{c}{2020}=\frac{b-c}{2021-2020}=b-c\)
\(\frac{a}{2022}=\frac{b}{2021}=\frac{c}{2020}=\frac{a-c}{2022-2020}=\frac{a-c}{2}=-\frac{c-a}{2}\)
\(\Rightarrow a-b=b-c=-\frac{c-a}{2}\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)=\left(-\frac{c-a}{2}\right)^2=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
Cảm ơn bn nha chúc bn 1 ngày tốt lành nha!Cảm ơn bn hảo thần đồng!hí hí @_@ ha &_&