Tìm giá trị thực của tham số mm để ba đường thẳng y = −5(x + 1), y = mx + 3 và y = 3x + m phân biệt và đồng qui.
A. m ≠ 3
B. m = 13
C. m = -13
D. m = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:
suy ra d và d’ cắt nhau tại M( m-1; 3m-1)
+ Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có
3m-1= -m( m-1) + 2 hay m2+ 2m-3=0
Suy ra m=1 hoặc m= -3
Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ : y= 3x+ 2 và d’’: y= -x+ 2 phân biệt và đồng quy tại M(0; 2).
Với m= -3 ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn
Vậy m= 1 là giá trị cần tìm.
Chọn B.
Tọa độ của hai đường thẳng \(y=x\) và \(y=-x-3\) là nghiệm của hệ :
\(\left\{{}\begin{matrix}y=x\\y=-x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x\\x=-x-3\end{matrix}\right.\Leftrightarrow x=y=-\frac{3}{2}\)
Để 3 đường thẳng đồng qui thì đường thẳng \(y=mx+5\) phải nhận tọa độ của hai đường thẳng trên nên ta có :
\(-\frac{3}{2}=-\frac{3}{2}m+5\)
\(\Leftrightarrow-\frac{3}{2}m=-\frac{13}{2}\)
\(\Leftrightarrow n=\frac{13}{3}\)
Đáp án C