Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:
A.11
B. 10
C. 9
D. 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ hai đỉnh của đa giác n n ∈ ℕ , n ≥ 3 đỉnh tạo thành một đoạn thẳng (bao gồm cả cạnh đa giác và đường chéo).Do đó,đa giác có tất cả C n 2 đường chéo và cạnh
Đa giác n thì có n cạnh nên số đường chéo của đa giác là:
C n 2 − n = 44 ⇔ n ! n − 2 ! .2 ! − n = 44 ⇒ n ( n − 1 ) 2 − n = 44
⇔ n n − 1 − 2 n = 88 ⇔ n 2 − 3 n − 88 = 0 ⇔ n = 11 n = − 8 ⇔ n = 11 (vì n ∈ ℕ ).
Chọn đáp án A.
Ta có: n ( n − 3 ) 2 = 44
ó n2 – 3n – 88 = 0
ó (n – 11) (n + 8) = 0
⇔ n − 11 = 0 n + 8 = 0
⇔ n = 12 ( t m ) n = − 9 ( k t m )
Số cạnh của đa giác là 11
Đáp án cần chọn là: A
a) Số đường chéo của đa giác đó :
\(\frac{\left(8-3\right).8}{2}=20\)( đường chéo )
b) Tổng số đo các góc của đa giác là :
\(108.\left(8-2\right)=108.6=1080\)độ
c) Số đo mỗi góc của đa giác đều 8 cạnh :
\(1080:8=135\)độ
Số đường chéo của đa giác n cạnh là (n( n - 3 ))/2. ( n ∈ N, n ≥ 3 )
Theo giả thiết ta có (n( n - 3 ))/2 = n ⇔ n( n - 3 ) = 2n ⇔ n 2 - 3 n - 2 n = 0
⇔ n 2 - 5 n = 0 ⇔ n ( n - 5 ) = 0 ⇔
So sánh điều kiện ta có n = 5 thỏa mãn.
Chọn A
Cứ đỉnh của đa giác sẽ tạo thành một đoạn thẳng (bao gồm cả cạnh đa giác và đường chéo).
Khi đó có cạnh.
Số đường chéo là 66-12=54.
Chọn D.
số đường chéo của đa giác là : \(\frac{n\left(n-3\right)}{2}=\frac{9\left(9-3\right)}{2}=27\)
k mình nha !
Cứ hai đỉnh của đa giác đỉnh tạo thành một đoạn thẳng (bao gồm cả cạnh đa giác và đường chéo).
Khi đó số đường chéo là:
Chọn A.