Cách sắp xếp đa thức nào sau đây là đúng (theo lũy thừa giảm dần của biến)
A. 5 x 2 + 3 x 4 + 2 x 3 + x - 1
B. - 1 + x + 2 x 3 + 3 x 4 + 5 x 2
C. - 1 + x + 5 x 2 + 2 x 3 + 3 x 4
D. 3 x 4 + 2 x 3 + 5 x 2 + x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128
A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)
A(x) + B(x) = 2x4 - 4x + 131
A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)
A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128
A(x) - B(x) = (x4 - x4) - (3x - x) - ( 128 - 3)
A(x) - B(x) = 0 - 2x - 125
A(x) - B(x) = -2x - 125
A(x) = x4 + 3 - 3x
A(x) = x4 - 3x + 3
B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x
B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)
B(x) = 128 - 0 + x4 - x
B(x) = x4 - x + 128
b, A(2) = 24 - 3 \(\times\) 2 + 3
A(2) = 16 - 6 + 3
A(2) = 10 + 3
A(2) = 13
Bài làm:
Ta có:
\(f\left(x\right)=x^3-3x^2+2x-5+x^2\)
\(f\left(x\right)=x^3-2x^2+2x-5\)
Và:
\(g\left(x\right)=-x^3-5x+3x^2+3x+4\)
\(g\left(x\right)=-x^3+3x^2-2x+4\)
Chúc bạn học tốt!
A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1
=4x^4+2x^3+2x^2-5x-1
\(\begin{array}{l}a)A = 3x - 4{x^4} + {x^3}\\ = - 4{x^4} + {x^3} + 3x\\b)B = - 2{x^3} - 5{x^2} + 2{x^3} + 4x + {x^2} - 5\\ = ( - 2{x^3} + 2{x^3}) + \left( { - 5{x^2} + {x^2}} \right) + 4x - 5\\ = 0 + ( - 4{x^2}) + 4x - 5\\ = - 4{x^2} + 4x - 5\\c)C = {x^5} - \dfrac{1}{2}{x^3} + \dfrac{3}{4}x - {x^5} + 6{x^2} - 2\\ = \left( {{x^5} - {x^5}} \right) - \dfrac{1}{2}{x^3} + 6{x^2} + \dfrac{3}{4}x - 2\\ = - \dfrac{1}{2}{x^3} + 6{x^2} + \dfrac{3}{4}x - 2\end{array}\)
`Answer:`
\(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)
\(=\left(2x^4-x^4\right)-3x^2+\left(5x-3x\right)-5\)
\(=x^4-3x^2+2x-5\)
\(g\left(x\right)=-2x^3+10x-1-7x^2+x^4-15x+10x^2\)
\(=x^4-2x^3+\left(-7x^2+10x^2\right)+\left(10x-15x\right)-1\)
\(=x^4-2x^3+3x^2-5x-1\)
\(f\left(x\right)+g\left(x\right)=\left(x^4-3x^2+2x-5\right)+\left(x^4-2x^3+3x^2-5x-1\right)\)
\(=\left(x^4+x^4\right)-2x^3+\left(-3x^2+3x^2\right)+\left(2x-5x\right)+\left(-5-1\right)\)
\(=2x^4-2x^3-3x-6\)
Thu gọn
A(x) = 5 +3x2 – x - 2x2
A(x) = 5+x2-x
A(x) = x2-x+5
B(x) = 3x + 3 – x – x2
B(x) = ( 3x-x) + 3 - x2
B(x) = 2x+3-x2
B(x)= -x2 + 2x+3
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
a, \(P(x)=3x^4+x^2-3x^4+5\\ = (3x^4-3x^4)+x^2+5\\ = x^2+5\)
b, \(P(0)=0^2+5=5\\ P(-3)=(-3)^2+5=-9+5=-4\)
c, Ta có: x2 ≥ 0 với mọi x
Nên x2 + 5 > 5
Hay P(x) > 5
Vậy P(x) không có nghiệm
Chọn D