K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Chọn D

`1)`

`A(x)=x^3-2x^2+5x-2-x^3+x+7`

`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`

`A(x)=-2x^2+6x+5`

Bậc của đa thức: `2`

Hệ số cao nhất: `-2`

Hệ số tự do: `5`

`2)`

`H(x)-(2x^2 + 3x – 10) = A(x)`

`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`

`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`

`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`

`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`

`H(x)=9x-5`

`3)`

Đặt `9x-5=0`

`9x=0+5`

`9x=5`

`-> x=5/9`

 

2 tháng 4 2023

loading...  

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

20 tháng 8 2015

1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1% 
1 năm sau tăng: 4000x2,1%= 82 người 
Số dân sau 1 năm: 4000+82=4082 người 
b/ Tương tự tỉ lệ tăng: 15:1000=1,5% 
Số dân sau 1 năm: 4000x1,5%+4000=4060 người

18 tháng 4 2016

P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8

Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5

ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm

Xét M(x)=0 suy ra...........

N(x)=5x+3

Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm

a: A(x)=-x^3+7x^2+2x-15

b: Bậc 3

c: Hệ số cao nhất là -1

Hệ số tự do là -15

d: A(x)+B(x)

=-x^3+7x^2+2x-15+4x^3-x^2+5x-15

=3x^3+6x^2+7x-30

a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)

\(g\left(x\right)=x^4+x^3+2x^2\)

b: Hệ số tự do của f(x) là 0 và g(x) là 0

Hệ số cao nhất của f(x) là 1

Hệ số cao nhất của g(x) là 1

c: Bậc của f(x) là 4

Bậc của g(x) là 4

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5

=6x^5-4x^3+29x^2-2x+2

b: bậc của P(x) là 5

c: hệ số lớn nhất là 6

Hệ số tự do là 2

P(-1)=-6+4+29+2+2=29+2=31

6 tháng 3 2022

a, \(P=-x^4+x^3+x^2-5x+2\)

hế số cao nhất 2 ; hế số tự do 2 ; bậc 4 

\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)

hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4 

b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)