K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

1. Xét tam giác MAE và tam giác MCB có:

     ME = MB (gt)

     MA = MC (gt)

     Góc M1 = góc M2 (đối đỉnh)

=> Tam giác MAE = Tam giác MCB (c.g.c)

2. Xét tứ giác AEBC có:

     M là trung điểm BE (gt)

     M là trung điểm AC (gt)

=> Tứ giác AEBC là hình bình hành 

=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:

   N là trung điểm BA (gt)

   N là trung điểm FC (gt)

=> Tứ giác FABC là hình bình hành

=> FA // BC và FA = BC (2)

Từ (1), (2) => AE = AF

23 tháng 12 2016


A B C M N E F

Hình xấu quá bạn thông cảm.

12 tháng 3 2020

N B C M A F E

a) Xét tam giác MAE và tam giác MCB

có AM= AC (GT)

BM = ME(GT)

góc AME = góc CMB ( đối đỉnh)

suy ra tam giác MAE = tam giác MCB (c.g.c)   (1)

b) Từ (1) suy ra AE = BC ( hai cạnh tương ứng)  (2)

Xét tam giác ANF và tam giác BNC

có AN = BN(GT)

góc ANF = góc BNC ( đối đỉnh)

NF=NC (GT)

suy ra tam giác ANF = tam giác BNC (c.g.c)  (3)

suy ra AF = BC ( hai cạnh tương ứng )  (4)

Từ (2) và (4) suy ra AE=AF  (5)

c) Từ (1) suy ra góc MAE = góc C

Từ (3) suy ra góc FAB = góc B

mà góc BAC + góc B + góc C = 1800

suy ra góc BAC + góc MAE+góc FAB = 1800

hay góc EAF = 1800  

suy ra ba điểm A, E, F thẳng hàng

23 tháng 12 2020

a) Xét ΔAME và ΔCMB có 

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

⇒AE=BC(hai cạnh tương ứng)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)

mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔANF và ΔBNC có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

⇒AF=BC(hai cạnh tương ứng)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AE//BC(cmt)

và AF,AE có điểm chung là A

nên F,A,E thẳng hàng(1)

Ta có: AE=BC(cmt)

mà AF=BC(cmt)

nên AE=AF(2)

Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

15 tháng 12 2023

loading...  loading...  loading...  

1 tháng 12 2021

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng

27 tháng 2 2017

XÉT \(\Delta ABM\) VÀ \(\Delta ACN\) CÓ

AB=AC (GT)

AN=AM (GT)

\(\widehat{B}=\widehat{C}\) (VÌ TAM GIÁC ABC CÂN TẠI A)

=>\(\Delta AMB=\Delta ANC\left(cgc\right)\)

b;VÌ TAM GIÁC AMB=TAM GIÁC ANC =>BM=NC

XÉT \(\Delta BNC\) VÀ \(\Delta BMC\) CÓ

BM=NC

\(\widehat{MBC}=\widehat{NCB}\)

GÓC C CHUNG

=>AM GIÁC BNC=TAM GIÁC BMC (GCG)

C;

29 tháng 2 2020

hình như sai đầu bài r bạn ơi !!

3 tháng 5 2020

Mình ghép câu b vào câu a luôn nhé bạn !! 

a) Xét ΔAMB và ΔCMD có 

      AM=CM( do M là trung điểm của AC)

  Góc AMB= góc CMD(đối đỉnh)

     BM=DM

Suy ra :  ΔAMB=ΔCMD(c.g.c)

\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^0\)

=> CD//AB

b ) Xét ΔANE và ΔBNC có 

     AN=NB( do N là trung điểm của AB)

 Góc ANE= góc BNC( đối đỉnh)

    NC=NE

=> ΔANE=ΔBNC(c-g-c)

=> AE=BC và góc AEN= góc BCN

=> EA//BC

Chứng minh tương tự ta có AD=BC và AD//BC

=> A;E;D thẳng hàng

Mà AE=AD

=> A là trung điểm của ED