K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Ta có:

0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)

Tương tự:

0 < b < 1 ⇒ b2 - b < 0 (2)

0 < c < 1 ⇒ c2 - c < 0 (3)

Cộng (1); (2); (3) vế theo vế ta được:

a2 + b2 + c2 - a - b - c < 0

⇔ a2 + b2 + c2 < a + b + c

⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)

4 tháng 2 2020

\(0< a< 1\Rightarrow a^2< a\)

Tương tự: \(b^2< b;c^2< c\)

=> a^2+b^2+c^2<a+b+c=2

4 tháng 2 2020

Ta có: \(0< a< 1\)

\(\Rightarrow a-1< 0\)

\(\Rightarrow a^2-a< 0\left(1\right)\)

Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)

Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)

Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:

\(a^2+b^2+c^2-a-b-c< 0\)

\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)

27 tháng 3 2016

GIANG ƠI ! GIÚP MÌNH ĐI

12 tháng 5 2016

Cho a = 1; b =0,5; c = 0,5 

1^2+0,5^2+0,5^2=1+0,25+0,25=1,5

9 tháng 3 2018

Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)

Mà theo đề bài:

\(a\le b+1\le c+2\)

\(\Rightarrow1-b-c\le b+1\le c+2\)

\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)

\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)

14 tháng 3 2018

Từ: a+b+c=1⇔a=1−b−c

Mà theo đề bài:

a≤b+1≤c+2

⇒1−b−c≤b+1≤c+2

⇒2(c+2)≥1−b−c+b+1

⇒2c+4≥2−c⇔3c+4≥2⇔3c≥−2⇔c≥−23 

...

7 tháng 2 2019

đề là J bạn ghi rõ vào tớ ko thấy :(((

7 tháng 2 2019

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

13 tháng 1 2020

Ta có: 0 <  a < 1 ; 0 < b < 1 ; 0 < c < 1 

\(\Rightarrow\hept{\begin{cases}a\left(a+1\right)< 0\\b\left(b+1\right)< 0\\c\left(c+1\right)< 0\end{cases}}\)

Cộng vế với vế. Ta được:

\(a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)< 0\)

\(a^2+a+b^2+b+c^2+c< 0\)

\(a^2+b^2+c^2< a+b+c\)

Mà a + b + c = 2

\(\Rightarrow a^2+b^2+c^2< 2\left(đpcm\right)\)

P/s: Không chắc đâu nhé :D

11 tháng 10 2019

theo nguyên lí Dirichlet thì trong 3 số a, b, c có ít nhất 2 số cùng dấu, giả sử 2 số đó là b, c hay \(bc\ge0\)

=> \(a^2+b^2+c^2\le a^2+\left(b^2+2bc+c^2\right)=a^2+\left(b+c\right)^2=a^2+\left(-a\right)^2=2a^2< 2\)

5 tháng 2 2020

Vì 0 ≤ a ≤ b + 1 ≤ c + 2

=> 0 ≤ a + b + 1 + c + 2 ≤ c + 2 + c + 2 + c + 2

=> 0 ≤ 4 ≤ 3c + 6 (vì a + b + c = 1)

=> 3c + 6 ≥ 4

=> 3c ≥ -2 => c ≥ -2/3

Dấu " = " xảy ra <=> a + b + c = 1 <=> a + b + (-2/3) = 1 <=> a + b = 5/3

Vậy GTNN của c là -2/3 khi đó a + b = 5/3

7 tháng 2 2020

Chắc em nhầm cô ạ!! Làm lại là:

Vì: \(0\le a\le b+1\le c+2\Rightarrow a+b+c\le c+2+c+1+c\)

\(\Leftrightarrow1\le3c+3\left(a+b+c=1\right)\)Hay \(3c\ge-2\Rightarrow c\ge-\frac{2}{3}\)

Vậy \(Min_C=-\frac{2}{3}\) Khi đó: \(a=\frac{4}{3};b=\frac{1}{3}\)

22 tháng 12 2015

bai nay dai lam nhung ban cu lam theo ncac buoc sau:
b1: lấy dữ liệu đầu bài để nhận với 1 số mà bằng được với cái phải chứng minh thế là ra
b2: nhân đa thức với đa thức(tự làm)
b3:ghép các phân thức đồng dạng với nhau.
b4:kết luận