Tỉ số SABC:SABM biết M thuộc cạnh BC của tam giác ABC và MC=2MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có : CN = 3NA hay CA = 4NA
=> SAND = 1/4SADC (CA = 4NA, chung đường cao kẻ từ D)
=> SADC = 10 x 40 = 40 (cm2)
Lại có SAMC = 1/2SAMB (BM = 2MC, chung đường cao kẻ từ A), vì cả hai tam giác cùng có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM
Và hai đường cao này là hai đường cao của hai tam giác ADB và ADC
=> SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
=> SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (CA = 4NA, chung đường cao kẻ từ A)
=> SABC = 90 x 4 = 360 (cm2)
Do tính đối xứng, không mất tính tổng quát, giả sử M nằm giữa B và H
ABC vuông cân \(\Rightarrow BH=CH=AH\)
Ta có:
\(\dfrac{MA^2}{MB^2+MC^2}=\dfrac{MA^2}{\left(BH-MH\right)^2+\left(CH+MH\right)^2}=\dfrac{MA^2}{\left(BH-MH\right)^2+\left(BH+MH\right)^2}\)
\(=\dfrac{MA^2}{2\left(BH^2+MH^2\right)}=\dfrac{MA^2}{2\left(AH^2+MH^2\right)}=\dfrac{MA^2}{2MA^2}=\dfrac{1}{2}\)
Do tính đối xứng, ko mất tính tổng quát, giả sử M nằm giữa B và H
ABC vuông cân \(\Rightarrow AH\) đồng thời là trung tuyến
\(\Rightarrow AH=\dfrac{1}{2}BC\Rightarrow AH=BH=CH\)
Ta có:
\(\dfrac{MA^2}{MB^2+MC^2}=\dfrac{MA^2}{\left(BH-HM\right)^2+\left(CH+MH\right)^2}=\dfrac{MA^2}{\left(AH-MH\right)^2+\left(AH+MH\right)^2}\)
\(=\dfrac{MA^2}{2\left(AH^2+MH^2\right)}=\dfrac{MA^2}{2MA^2}=\dfrac{1}{2}\)
Bạn vào câu hỏi tương tư nha !!!
câu hỏi tương tự nha bạn