Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AH ko bằng cạnh AB và HC ko bằng cạnh BC nên ta ko thể kết luận tam giác AHC = tam giác BAC theo trường hợp cạnh - cạnh - cạnh
Xét hai tam giác ΔAHC và ΔBAC có:
-AC chung
-Góc BAC = góc AHC
=>Ko đủ dữ kiện để kết luận hai tam giác trên bằng nhau
Gọi số đo các cạnh AB . BC . CA lần lượt là x , y , z ( x , y , z > 0 )
Vì ba cạnh AB, BC, CA của ∆ ABC tỉ lệ với ba số: 2,5; 2 và 1,5 nên \(\frac{x}{2,5}=\frac{y}{2}=\frac{z}{1,5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2,5}=\frac{y}{2}=\frac{z}{1,5}=\frac{x+y+z}{2,5+2+1,5}=\frac{192}{6}=32\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2,5}=32\\\frac{y}{2}=32\\\frac{z}{1,5}=32\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=80\\y=64\\z=48\end{cases}}\)
cho hình vẽ.
Ta có BM+CM=BC(vì M thuộc BC) và MC=2*BM=>3*BM=BC=>BM=1/3BC
Ta có SABC=(AH*BC)/2 hay (AH*3*BM)/2
SABM=(AH*BM)/2
=>SABC/SABM=(AH*3*BM)/2*2/(AH*BM)=(AH*3*BM)/(AH*BM)=3
Vậy SABC/SABM=3