K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

a) xét tam giác AMB và tam giác AMC có:

AB=AC(gt)

AM chung

BM=MC(M là trung điểm của BC)

=> tam giác AMB= tam giác AMC(c.c.c)

b)xét tam giác ABC có AB=AC

=> ABC là tam giác cân tại A

=>góc ABC= góc ACB(t/c tam giác cân)

Xét tam giác BMH vuông tại H và CMK vuông tại K có:

BM=MC(M là t/đ' của BC)

góc HBM=góc KCM (góc ABC=góc ACB)

=>tam giác BMH= tam giác CMK( CH-GN)

=>HB=HC(2 cạnh tương ứng)

30 tháng 12 2015

học hình thì bạn phải vẽ hình chứ đọc đề không thì sao hiểu đc

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)

 

7 tháng 5 2018

a) xét tam giác AMBvà tam giác AMC có:

am là cạnh chung 

ab=ac 

mb=mc(vì m là trung điểm của bc )

suy ra ; tam giác AMB=AMC(c.c.c)

b) 

30 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBK va tamgiac MCH co : 

goc BKM = goc CHM = 90do MK | AB va MH | AC 
tamgiac ABC can tai A (gt)  => goc ABC = goc ACB (tc)

MB = MC do M la trung diem cua BC (gt)

=>  tamgiac MBK = tamgiac MCH (ch - gn)

30 tháng 1 2019

hmb và kcm cơ ma

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc BAC

hay góc BAM= góc CAM

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

hay ΔMHK cân tại M

d: Xét ΔAHK có AH=AK

nên ΔAHK cân tại A

e: Xét ΔABC có AH/AB=AK/AC

nên HK//BC

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc với BC

d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

Do đó: ΔAHM=ΔAKM

=>AH=AK

16 tháng 11 2021

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

22 tháng 1 2019

a, xét tam giác MBH và tam giác MCK ta có: 

góc MHB= góc MKC=90 độ

BM=MC(gt)

góc B =góc C(gt)

vậy tam giác BMH = tam giác CMK(ch-gn)

22 tháng 1 2019

b, xét tam giác AMH và tam giác AMK có:

AM chung

MH=MK( do tam giác BMH= tam giác CMK)

góc AHM= góc AKM=90 độ

suy ra tam giác AMH= tam giác AMK( ch-cgv)

a: Xét ΔAMB và ΔAMC có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔAMB=ΔACM

b:

ΔABC cân tại A có AM là phân giác

nên AM vuông góc BC và M là trung điểm của BC

MB=MC=BC/2=3cm

=>AM =căn 5^2-3^2=4cm

c: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có

MB=MC
góc B=góc C

=>ΔMHB=ΔMKC

=>MH=MK

Xét ΔHMQ vuông tại H và ΔKMP vuôg tại K có

MH=MK

góc HMQ=góc KMP

=>ΔHMQ=ΔKMP

=>MQ=MP

=>ΔMQP cân tại M