Choa,b,c>0 Cmr: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)=\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)
Vì a;b;c>0 áp dụng bất đẳng thức cosi ta có:
\(\frac{a}{c}\)+\(\frac{c}{a}\)\(\ge\)2\(\sqrt{\frac{a}{c}.\frac{c}{a}}\)=2
\(\frac{b}{c}\)+\(\frac{c}{b}\)\(\ge\)2\(\sqrt{\frac{b}{c}.\frac{c}{b}}\)=2
\(\frac{b}{a}\)+\(\frac{a}{b}\)\(\ge\)2\(\sqrt{\frac{b}{a}.\frac{a}{b}}\)=2
Cộng vế với vế ta có:
\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)\(\ge\)2+2+2
=>\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)\(\ge\)6
dấu = xảy ra a=b=c
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Làm hộ tui đi à,đây là Sol của thầy Sỹ,đọc là 1 chuyện nhưng hiểu mới là vấn đề.
BĐT đẹp vãi ra mà ối sồi ôi lời giải khủng VCL.Hóng cách nhẹ hơn...
Để cho dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow xyz=1\)
\(P=\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\left(\frac{z^2}{x}+\frac{x^2}{y}+\frac{y^2}{z}\right)\)
\(P\ge\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{\left(x+y+z\right)^2}{x+y+z}=2\left(x+y+z\right)\ge2.3\sqrt[3]{xyz}=6\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)
a/c +b/c+b/a+c/a+c/b+a/b>=6 ( ap dung cosi)