Tìm GTLN của
A = y - \(2y^2\) + 4040
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)
\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)
\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)
\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
\(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{15}{2}\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\)
\(maxA=-\dfrac{15}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Ta có: \(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+6\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
\(A\ge1\forall x\)
Dấu '=' xảy ra khi x=0
\(B\ge-5\forall x\)
Dấu '=' xảy ra khi x=0
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)
\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)
\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
a: Ta có: \(N=-x^2-x-1\)
\(=-\left(x^2+x+1\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: ta có: \(B=3x^2+4x-13\)
\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)
\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
\(A=y-2y^2+4040=-2\left(y^2-\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{32321}{8}\)
\(=-2\left(y-\dfrac{1}{4}\right)^2+\dfrac{32321}{8}\le\dfrac{32321}{8}\)
\(maxA=\dfrac{32321}{8}\Leftrightarrow y=\dfrac{1}{4}\)