Nếu đa thức 2x^3-mx+n có hai nhân tử x+2 và x-1 thì giá trị của 2m+3n=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng tìm được m = 6, n = 4
Vậy 2m + 3n = 2×6 + 3×4 = 24
B1:
[(m+n)+(2m-3n)]^2
= (m+n)^2 + 2(m+n)(2m-3n) + (2m-3n)^2
= m^2 +2mn +n^2 + 4m^2 - 6mn + 4mn - 6n^2 + 4m^2 - 12mn + 9n^2
= 9m^2 - 12mn + 4n^2
B2,3
bn lm theo hdt ( a +b + c) ^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc nha
2/
Ta có x = -2 là nghiệm của C (x)
=> \(C\left(-2\right)=0\)
=> \(4m-\left(-2\right)\left(2m-3\right)+7m-5=0\)
=> \(4m-\left(-4m\right)+6+7m-5=0\)
=> \(4m+4m+6+7m-5=0\)
=> \(15m+1=0\)
=> \(15m=-1\)
=> \(m=\frac{-1}{15}\)
Vậy khi \(m=\frac{-1}{15}\)thì x = -2 là nghiệm của C (x).
a: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
b: \(N=n^3-3n^2-n\left(3-n\right)\)
\(=n^2\left(n-3\right)+n\left(n-3\right)\)
\(=n\left(n-3\right)\left(n+1\right)\)
\(=13\cdot10\cdot14=1820\)
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1