Tính giá trị của biểu thức \(P=x^3+y^3+20\) biết x+y=4 và \(x^2+y^2=10\)
mọi người giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)
Nếu y = \(\sqrt{7}\) thì :
x2y3 = 5 . y2 .y
x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)
Nếu y = -\(\sqrt{7}\) thì :
x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)
b) x2y2 = 5.7 = 35
x6y6 = (x2y2)3 = 353 = 42875
c) làm tương tự câu (a). Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
Ta có
\(2\left(x^3+y^3\right)=2\left(x^3+3xy\left(x+y\right)+y^3\right)-6xy\left(x+y\right)\)
\(=2\left(x+y\right)^3-6xy=2-6xy\)
Vậy ta có
\(B=2-6xy-3\left(x^2+y^2\right)=2-3\left(x+y\right)^2=-1\)
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Bài làm
x + y = 4
=> ( x + y )2 = 16
=> x2 + 2xy + y2 = 16
=> 10 + 2xy = 16
=> 2xy = 6
=> xy = 3
Ta có : P = x3 + y3 + 20
= ( x + y )3 - 3xy( x + y ) + 20
= 43 - 3.3.4 + 20
= 64 - 36 + 20
= 48
Ta có:\(x+y=4\Rightarrow\left(x+y\right)^2=16\)
\(\Rightarrow x^2+2xy+y^2=16\)
\(\Rightarrow2xy+10=16\)
\(\Rightarrow2xy=6\Rightarrow xy=3\)
Ta có:\(P=x^3+y^3+20\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+20\)
\(=4\left(10-3\right)+20=48\)