chứng minh rằng 16^10+32^7 chia hết cho 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
\(16^{10}+32=160000000000+32.\)
\(=160000000032\)
Vì 160000000032 chia hết cho 3 nên 1610 + 32 chia hết cho 3.
mình nhé.Mình cảm ơn nhiều,Bài này đúng 100%
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252
= 252 ( 28 - 23 - 1)
= 252 . 247 = 252 . 19 . 13
=> chia hết cho 19
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
a/ \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)chia hết cho 33
b/ \(10^9+10^8+10^7=10^7\left(10^2+10+1\right)=10^6.2.5.111=10^6.2.555\)chia hết cho 555
\(16^{10}+32^7=\left(2^4\right)^{10}+\left(2^5\right)^7=2^{40}+2^{35}=2^{35}.2^5+3^{35}=2^{35}.\left(2^5+1\right)=2^{35}.33\)
chia hết cho 33
tick nhé
bn Hoàng Phúc làm đúng r đó