Tìm số chia hết cho 5 và 2 sao cho 318 < … < 326
A. 320
B. 323
C. 324
D. 325
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
318<...<326 nên số cần điền là 319,320,321,322,323,324.325. Số chia hết cho 5 và 2 là 320. Vậy số cần tìm là 320
Bạn tính SLS của tổng S rồi chia 2 nhân với 325+1 là ra
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0.\)
\(1+\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}-4+\frac{x+349}{5}=0\)
\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
\(\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
Study well
\(\Rightarrow\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+349}{5}-4=0\)
\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Mà \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)
Nên \(x+329=0\Rightarrow x=-329\)
Vậy \(x=-329\)
Chúc bạn học tốt !!!
\(\frac{x+2}{327}+\frac{x+3}{326}+....+\frac{x+349}{5}=\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}+4=\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\frac{x+329}{5}=\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+....+\frac{1}{324}+\frac{1}{5}\right)=0\Rightarrow x+329=0\Leftrightarrow x=-329\)
Bạn tham khảo tại đây nhé: Câu hỏi của trần như.
Chúc bạn học tốt!
a.
Ta có:
(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+349)/5=0
<=>(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+329)-4 (giải thích: (x+349)/5=(x+329+20)/5=(x+329)/5+4)
<=>1+(x+2)/327+1+(x+3)/326+1+(x+4)/325+1+(x+5)324+(x+329)/5=0
<=>(x+329)/327+(x+329)/326+(x+329)/325+(x+329)/324+(x+329)/5=0
<=>x+329(1/327+1/326+1/325+1/324+1/5)=0
Vì (1/327+...+1/5) khác 0 => x+329=0
=>x=-329
C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324
3C = 32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325
3C - C = -325 - 3
2C = -325 - 3
2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\) + 3]
2C = - \(\overline{..6}\)
⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\)
⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)
b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0
Vì (\(x+1\))2022 ≥ 0
\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:
(\(x,y\)) = (-1; 1)
Chọn A.
318 < … < 326 nên số cần điền là 319,320,321,322,323,324.325.
Số chia hết cho 5 và 2 là 320.
Vậy số cần tìm là 320.