K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2020

a) \(\frac{2x-2y}{x^2-y^2}=\frac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{2}{x+y}\)

\(\frac{5}{2x^2+4xy+2y^2}=\frac{5}{2\left(x^2+2xy+y^2\right)}=\frac{5}{2\left(x+y\right)^2}\)

MTC : 2( x + y )2

=> \(\hept{\begin{cases}\frac{2x-2y}{x^2-y^2}=\frac{2}{x+y}=\frac{2\times2\left(x+y\right)}{\left(x+y\right)\times2\left(x+y\right)}=\frac{4x+4y}{2\left(x+y\right)^2}\\\frac{5}{2x^2+4xy+2y^2}=\frac{5}{2\left(x^2+2xy+y^2\right)}=\frac{5}{2\left(x+y\right)^2}\end{cases}}\)

b) \(\frac{x-y}{x^3-y^3}=\frac{x-y}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{1}{x^2+xy+y^2}\)

\(\frac{5}{2x^2+2x+2}=\frac{5}{2\left(x^2+x+1\right)}\)

\(\frac{6}{4x^3+4x+4}=\frac{6}{4\left(x^2+x+1\right)}=\frac{3}{2\left(x^2+x+1\right)}\)

MTC : 2( x2 + x + 1 )( x2 + xy + y2 )

=> \(\frac{1}{x^2+xy+y^2}=\frac{2\left(x^2+x+1\right)}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}=\frac{2x^2+2x+2}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}\)

=> \(\frac{5}{2\left(x^2+x+1\right)}=\frac{5\left(x^2+xy+y^2\right)}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}=\frac{5x^2+5xy+5y^2}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}\)

=> \(\frac{3}{2\left(x^2+x+1\right)}=\frac{3\left(x^2+xy+y^2\right)}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}=\frac{3x^2+3xy+3y^2}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}\)

26 tháng 11 2020

a, \(\frac{2x-2y}{x^2-y^2};\frac{5}{2x^2+4xy+2y^2}\)

Ta có :  \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

\(2x^2+4xy+2y^2=2\left(x^2+2xy+y^2\right)=2\left(x+y\right)^2\)

MTC : \(2\left(x-y\right)\left(x+y\right)^2\)

\(\frac{2x-2y}{x^2-y^2}=\frac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{2\left(x-y\right)\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)^2}\)

\(\frac{5}{2\left(x^2+2xy+y^2\right)}=\frac{5}{2\left(x+y\right)^2}=\frac{5\left(x-y\right)}{2\left(x-y\right)\left(x+y\right)^2}\)

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

1: \(MTC=2\left(x-y\right)\left(x+y\right)\)

\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)

\(\dfrac{x+y}{2x^2+4xy+2y^2}\)

\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)

\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)

\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)

2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)

\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)

3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

25 tháng 1 2020

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

25 tháng 1 2020

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

18 tháng 12 2018

ko ghi đề bài nha làm luôn

a) \(\frac{\left(2x+2y\right)+\left(5x+5y\right)}{\left(2x+2y\right)-\left(5x+5y\right)}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\frac{\left(2+5\right)\left(x+y\right)}{\left(2-5\right)\left(x+y\right)}=\frac{-7}{3}\)

b)\(\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)

18 tháng 12 2018

a)ĐK: \(x\ne-y;x,y\ne0\)

\(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(2+5\right)}{\left(x+y\right)\left(2-5\right)}=-\frac{7}{3}\)

a: 1/x^2y=1/x^2y

3/xy=3x/x^2y

b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)

\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)

28 tháng 7 2023

Mik cảm ơn ạ