cho a+b+c=0 Rút gọn biểu thức a= a^2/(a^2-b^2-c^2) + b^2/(b^2-a^2-c^2)+c^2/(c^2-b^2-a^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)
Với a + b + c = 0 , ta có :
\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)
\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)
\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)
\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)
\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)
\(\Leftrightarrow A=\frac{-3}{2}\)
Có a + b + c = 0
=> a + b = - c
=> (a + b)2 = c2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = - 2ab
Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca
Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab
Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac
=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)
jkghffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff giống bạn đó Nguyễn Thế An
\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)
\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
Nhận xét: \(\text{ *)}\) Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
Thật vậy, từ \(x+y+z=0\)
Suy ra: \(x+y=-z\) \(\left(\text{*}\right)\)
\(\Leftrightarrow\) \(\left(x+y\right)^3=\left(-z\right)^3\)
\(\Leftrightarrow\) \(x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)
\(\Leftrightarrow\) \(x^3+y^3+z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow\) \(x^3+y^3+z^3=-3xy\left(x+y\right)\)
\(\Leftrightarrow\) \(x^3+y^3+z^3=3xyz\) (theo \(\left(\text{*}\right)\) )
\(-------------\)
Theo giả thiết, ta có:
\(a+b+c=0\)
\(\Leftrightarrow\) \(b+c=-a\)
\(\Leftrightarrow\) \(\left(b+c\right)^2=\left(-a\right)^2\)
\(\Leftrightarrow\) \(b^2+2bc+c^2=a^2\)
\(\Leftrightarrow\) \(2bc=a^2-b^2-c^2\)
Tương tự, ta cũng có \(2ac=b^2-a^2-c^2\) \(;\) \(2ab=c^2-a^2-b^2\)
Mặt khác, vì \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) (theo nhận xét trên)
Do đó, \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3}{2abc}+\frac{b^3}{2abc}+\frac{c^3}{2abc}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (do \(abc\ne0\)
tu a + b + c = 0 suy ra a= - (b+c) suy ra a^2 = (b+c)^2=b^2 +c^2 + 2bc suy ra a^2 - b^2 - c^2 =2bc . tuong tu ta cung co b^2-a^2-c^2=2ac ; c^2- a^2 -b^2=2ab do do A = a^2/2bc + b^2/2ac+c^2/2ab =a^3/2abc+b^3/2abc +c^3/2abc lai co a+b+c=o nen a+b=-c suyra a^3+b^3+3ab(a+b)= -c^3 do do a^3 +b^3 +c^3=3abc vay A=3abc/2abc=3/2 (abc khac 0 : a+b=c=o)
ta có: a + b + c = 0 => a+b = - c => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = - 2ab
tương tự như trên, ta có: b2 + c2 - a2 = -2bc; c2 + a2 - b2 = -2ac
thay vào A, có:
\(A=\frac{1}{-2bc}-\frac{1}{2ca}-\frac{1}{2ab}\)
\(A=-\frac{1}{2}.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=-\frac{1}{2}.\left(\frac{a+b+c}{abc}\right)=-\frac{1}{2}.\left(\frac{0}{abc}\right)=0\)
KL: A = 0 tại a + b + c = 0
\(A=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-a^2-c^2}+\frac{c^2}{c^2-b^2-a^2}\)
\(A=\frac{a^2}{\left(b+c\right)^2-b^2-c^2}+\frac{b^2}{\left(a+c\right)^2-a^2-c^2}+\frac{c^2}{\left(a+b\right)^2-b^2-a^2}\)
\(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)
\(A=\frac{a^3+b^3+c^3}{2abc}\)
Có \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)nên
\(A=\frac{3}{2}\).