Cho A=1+2+2^2+2^3+...+2^51
Chứng minh A chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2A=2+2^2+2^3+...+2^{100}\\ \Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\\ \Rightarrow A=2^{100}-1\\ b,A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{98}\right)=3\left(1+2^2+...+2^{98}\right)⋮3\\ c,A=\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(1+...+2^{96}\right)=15\left(1+...+2^{96}\right)⋮15\)
CM A chia hết 15
Ta có:
\(A=1+2+2^2+...+2^{23}\)
\(A=\left(1+2+2^2+2^3\right)+...+\left(2^{20}+2^{21}+2^{22}+2^{23}\right)\)
\(A=\left(1+2+2^2+2^3\right)+...+2^{20}\left(1+2+2^2+2^3\right)\)
\(A=15+...+2^{20}.15\)
\(A=15.\left(1+...+2^{20}\right)\) chia hết cho 15
=> đpcm
CM A chia hết cho 63:
Ta có:
\(A=1+2+2^2+...+2^{23}\)
\(A=\left(1+2+2^2+2^3+2^4+2^5\right)+...+\left(2^{18}+2^{19}+2^{20}+2^{21}+2^{22}+2^{23}\right)\)
\(A=63+...+2^{18}.63\)
\(A=63.\left(1+...+2^{18}\right)\) chia hết cho 63
=> đpcm
A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23 + 24) + ... + (259 + 260)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) chia hết cho 3
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)
= 2.(1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 258.(1 + 2 + 22)
= 2.7 + 24.7 + ... + 258.7
= 7.(2 + 24 + ... + 258) chia hết cho 7
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + ... + 257.(1 + 2 + 22 + 23)
= 2.15 + 25.15 + ... + 257.15
= 15.(2 + 25 + ... + 257) chia hết cho 15
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
A=(2^1+2^2+2^3)+...(2^58+2^59+2^60)(20nhóm)
đật số đầu tiên của mỗi nhóm làm thừa số chungbên trong của mỗi nhóm còn lại 1+2+4=7
đặt 7 lammf thừa số chung bên trg còn (2^1+...+2^58)
Achia hết cho7
câu b làm tương tự nhưng nhóm 4 số
câu c nhóm 4 số nhưng lấy số đầu của mỗi nhóm chia 2 dể làm thừa số chung